Меню

Абсорбционный тепловой насос своими

Абсорбционный тепловой насос. АБТН и теплоснабжение

В силу сложившейся энергетической инфраструктуры ответственность за обеспечение теплоснабжения городского хозяйства во многих регионах возложена на градообразующие промышленные предприятия. Помимо физического износа такие системы теплоснабжения часто имеют и другие «наследственные болезни»: энергорасточительные технологии, растущие тарифы для потребителей (как следствие морального и физического износа сетей и оборудования), дефицит тепловой мощности и, как результат, почти всегда абсолютное несоответствие современным представлениям о рациональном отношении к энергоресурсам.

Учитывая, что собственное энергетическое хозяйство промышленные предприятия по нашим наблюдениям активно модернизируют, внедряя современные технологии, можно ожидать, что в поиске дальнейших путей повышения энергоэффективности предприятия неизбежно обратят внимание на сопутствующие системы.

Тем, кто задумался об этом уже сейчас, расскажем о том, как с использованием абсорбционных тепловых насосов сделать теплоснабжение более экологичным и выгодным экономически.

Поскольку технология отопления с помощью тепловых насосов в нашей стране имеет репутацию дорогой и не имеющей шансы на самоокупаемость, сразу оговоримся: абсорбционные тепловые насосы (АБТН) и холодильные машины (АБХМ) обладают несколькими особенностями, привлекательными для проектов централизованного теплоснабжения, а именно:

  • В отличие от обычного теплового насоса абсорбционный тепловой насос работает на тепловой энергии, что обеспечивает минимальное потребление электроэнергии и довольно низкие эксплуатационные расходы.
  • В тепловой установке необходимый источник тепловой энергии часто находится в «свободном» доступе, а тепло, используемое в абсорбционном тепловом насосе, передаётся в систему централизованного теплоснабжения.
  • В качестве хладагента абсорбционный тепловой насос использует воду, что означает практически нулевое воздействие на окружающую среду (потенциал глобального потепления (GWP) близок к нулю).
  • Технология является отработанной и проверенной именно для систем централизованного отопления: насчитываются сотни тысяч коммерческих установок по всему миру.

А теперь — давайте разберемся вместе, как с использованием абсорбционного теплового насоса можно превратить теплоснабжение близлежащих населенных пунктов в коммерчески выгодное направление бизнеса?

Как работает абсорбционный тепловой насос?

В целом, абсорбционный тепловой насос — это та же АБХМ. Их конструкции абсолютно идентичны и состоят из четырех отсеков с теплообменными поверхностями, которые вместе действуют либо как холодильная машина, либо как тепловой насос. Режим работы аппарата зависит только от внешней обвязки и параметров сред, подключаемых к его контурам. Сам принцип работы остаётся неизменным.

Абсорбционный тепловой насос заполнен водным раствором бромида лития (LiBr) — смесью воды (хладагент) и бромида лития (абсорбент). Хладагент испаряется в вакууме в объеме АБТН и отводит тепло от низкопотенциального источника энергии, которое циркулирует через контур Испарителя. Нагреваемая среда проходит последовательно в теплообменных трубках через Абсорбер и Конденсатор.

Постоянный процесс выпаривания хладагента из раствора LiBr в Генераторе, последующая конденсация в Конденсаторе, повторное испарение в Испарителе и, наконец, поглощение его абсорбентом в Абсорбере поддерживает необходимое низкое давление внутри теплового насоса.

Упрощенно схема работы абсорбционного теплового насоса представлена на рисунке:

Идеальные источники тепла для абсорбционного теплового насоса — это условно «бесплатные» для предприятия потоки избыточного (сбросного) тепла или отработанные дымовые газы. Даже на тех предприятиях (а их сегодня меньшинство), где такие потоки вовлекают во вторичное использование, внутренняя потребность в их тепле часто значительно меньше, чем его располагаемый объем. Сотни и тысячи мегаватт тепловой энергии ежесуточно теряются только на одних водооборотных системах с применением градирен (не важно мокрых или сухих). Дополнительно тратятся мегаватты электрической энергии для обеспечения работоспособности таких систем.

К примеру, если водооборотный цикл с мокрой вентиляторной градирней рассчитан на рециркуляцию в 1000 м 3 /ч при перепаде ΔT=10 °C (температурный режим системы 36/26 °C), это означает, что в максимально загруженном режиме работы в окружающую среду выбрасывается порядка 11,5 МВт тепловой энергии каждый час вне зависимости от времени года (около 50 000 Гкал в отопительный сезон). Дополнительно каждый отопительный период на привод вентиляторов градирни затрачивается от 50 (если используется ЧРП) до 300 МВт (для односкоростных электроприводов) электрической энергии.

А ведь это энергия, которую можно экономить (электричество), энергия, которую можно и нужно использовать, а не выбрасывать (тепло). Самый простой и распространённый способ — утилизация для нужд отопления (подогрев обратной линии теплосети).

Эффективность абсорбционного теплового насоса. Не только КПД

Говорить о коэффициенте полезного действия теплового насоса в классическом понимании этого термина не совсем правильно, поскольку стандартная формула вычисления КПД в этом случае будет некорректна из-за неучтенного бесплатного источника энергии – воздуха, воды или грунта. Ведь помимо греющего источника энергии АБТН использует и низкопотенциальное тепло, которое количественно учесть не всегда представляется возможным. Это и есть основная ошибка при расчёте КПД теплового насоса.

Для оценки эффективности работы абсорбционного теплового насоса применяется коэффициент трансформации (COP — coefficient of performance), который вычисляется следующим образом:

где Q1 – тепло, подведенное с греющим источником,
Q3 – полезное тепло на выходе из АБТН.

Количественно, наилучший COP для абсорбционных тепловых насосов составляет 1,7. Для парокомпрессионных тепловых насосов, работающих от электрической энергии, коэффициент трансформации может достигать 5.

Однако, есть как минимум два важных фактора, которые, несмотря на более низкий COP АБТН, делают общую эффективность системы выше.

«Бесплатное» тепло

Во-первых, абсорбционный тепловой насос позволяет отказаться от дополнительного сжигания топлива, используя избытки уже выработанного для других нужд тепла. Рассмотрим самые распространенные источники такого тепла:

Горячая вода

Греющий источник на предприятии часто можно обнаружить в виде горячей воды от существующих котельных установок или иного технологического оборудования. При этом вся тепловая энергия, используемая для процесса абсорбции (и энергия греющего источника, и энергия низкопотенциального контура), полностью возвращается в систему централизованного теплоснабжения.

Избытки свежего пара или не утилизированный отработанный пар также могут играть роль греющего источника на предприятии. В первую очередь, это пар, получаемый на котлах-утилизаторах в технологических процессах, пар с отборов турбин, от РОУ или турбин с противодавлением.

Дымовые и уходящие газы

Для повышения эффективности котлов центрального отопления традиционным решением является установка экономайзеров для охлаждения дымовых газов и максимальное извлечение энергии.

Однако таким образом происходит только охлаждение дымовых газов до температуры, чуть превышающей температуру в обратном трубопроводе теплосети, а это означает потерю большого количества энергии и ее сброс через дымовую трубу, часто при температуре около 50 °C или выше. При использовании абсорбционного теплового насоса дымовой газ может быть охлажден до температур, как правило, ниже 20 °С, а в лучшем случае и до 10 °С.

Это означает, что имеющаяся тепловая энергия может быть использована в системе центрального теплоснабжения практически полностью.

Оборотная вода

Водооборотные циклы в промышленности применяются повсеместно. Подавляющее большинство предприятий используют открытые циклы оборотного водоснабжения с применением мокрых башенных или вентиляторных градирен. Выше мы рассматривали конкретный пример по использованию низкопотенциального тепла оборотной воды.

Сточные воды

Тепло сточных вод предприятий с температурой менее 40 °С широко используется в мировой практике в качестве дополнительного источника тепла для нагрева сетевой воды. Подобные решения позволяют, помимо прочего, снизить тепловое загрязнение окружающей среды и нагрузку на очистные сооружения, построенные с применением биотехнологий (при повышенных температурах бактерии, отвечающие за очистку сточных вод, погибают).

Работа в круглогодичном режиме

Принимая во внимание отсутствие отопительной нагрузки в летний период, абсорбционные тепловые насосы имеют техническую возможность работать летом в режиме холодильных машин, а поэтому находят свое применение в установках централизованного охлаждения.

В «социальную инфраструктуру» градообразующих предприятий часто входят спортивные объекты, медицинские учреждения, локальные культурные и образовательные центры. Для всех этих объектов вопрос кондиционирования может быть решен с помощью абсорбционных тепловых насосов, работающих в режиме охлаждения, а значит есть возможность организовать холодоснабжение без дополнительных капитальных затрат.

В качестве альтернативного варианта, вырабатываемый холод в летний период может использоваться для нужд самого предприятия в технологических процессах или для охлаждения оборудования.

Таким образом, «социальная» теплофикационная нагрузка на промышленные предприятия из разряда обременения может перейти в разряд преимуществ. В качестве результата собственник производства повышает его энергоэффективность, снижает эксплуатационные затраты на выработку тепла и холода, повышает экологичность производства и усиливает статус социально ответственного предприятия в регионе.

Источник:
«Cool and sustainable with absorption heat pumps» Lars Sønderby Nielsen, Hot Cool Magazine, 2-2019

Источник статьи: http://1-engineer.ru/teplosnabzhenie-s-abtn/

Абсорбционный тепловой насос (варианты) и способ его работы (варианты)

Центробежный тепловой насос содержит парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой. Для обеспечения надежности работы насоса в условиях угрозы кристаллизации в потоке жидкого абсорбента насос содержит средство, чувствительное к началу кристаллизации абсорбента в рабочей жидкости или к началу недопустимо высокой вязкости, а также средство для предотвращения дальнейшей кристаллизации и/или для растворения кристаллизованного раствора или уменьшения высокой вязкости. 8 с. и 6 з.п.ф-лы, 6 ил.

Настоящее изобретение относится к абсорбционным тепловым насосам, в частности к абсорбционным центробежным тепловым насосам, и к способу работы указанных тепловых насосов.

Абсорбционные тепловые насосы содержат следующие компоненты: испаритель, абсорбер, генератор, конденсатор и необязательно теплообменник раствора; и загружаются соответствующей рабочей смесью в жидкой фазе. Рабочая смесь содержит летучий компонент и абсорбент для него.

В абсорбционных тепловых насосах, высокотемпературный источник теплоты, так называемой высокопотенциальной теплоты, и низкотемпературный источник теплоты, так называемой низкопотенциальной теплоты, передает теплоту к тепловому насосу, который затем передает (или эжектирует) сумму подводимой теплоты от обоих источников при промежуточной температуре.

При работе обычных абсорбционных тепловых насосов, рабочую смесь, богатую летучим компонентом (для удобства называемую ниже как «Смесь R»), нагревают под давлением в генераторе посредством высокопотенциальной теплоты так, чтобы образовывался пар летучего компонента и рабочая смесь, которая менее богата или бедна летучим компонентом (для удобства называемая ниже как «Смесь L»).

В известных одноступенчатых тепловых насосах, вышеуказанный пар летучего компонента из генератора конденсируется в конденсаторе при той же высокой температуре с выделением тепла и образованием жидкого летучего компонента. Жидкий летучий компонент для уменьшения его давления пропускают через расширительный клапан, а оттуда подают к испарителю. В испарителе вышеуказанная жидкость принимает тепло от низкотемпературного источника теплоты, как правило, от воздуха или воды при температуре окружающей среды, и испаряется. Результирующий пар летучего компонента проходит к абсорберу, где он абсорбируется в Смеси L с повторным образованием Смеси R и выделением тепла. После этого Смесь R передают к парогенератору и таким образом завершают цикл. Возможно много вариантов этого процесса, например, тепловой насос может иметь две или более ступеней, где пар из летучего компонента, испаренного посредством первого упомянутого (первичного) парогенератора конденсируется в промежуточном конденсаторе, который термически связан для подачи теплоты с промежуточным парогенератором, который производит дополнительный пар летучего компонента для конденсации в первом упомянутом (первичном) конденсаторе.

Когда мы хотим указать на физическое состояние летучего компонента, мы для удобства будем называть его газообразным летучим компонентом (когда он находится в газообразном или парообразном состоянии) или жидким летучим компонентом (когда он находится в жидком состоянии). Летучий компонент может иначе называться хладагентом, а смеси L и R — жидким абсорбентом. В конкретно приведенном примере, хладагентом является вода, а жидким абсорбентом — раствор гидроксида, содержащий гидроксиды щелочного металла, как описано в европейском патенте ЕР-А-208427, содержание которого включено в эту заявку ссылкой.

В патенте США N 5009085, содержание которого включено в эту заявку ссылкой, описан один из первых центробежных тепловых насосов. С применением насосов типа, описанного в патенте США N 5009085, связано несколько проблем и различные аспекты настоящего изобретения направлены на преодоление или по меньшей мере на уменьшение этих проблем.

В тепловых насосах, описанных, например, в патенте США N 5009085, имеется опасность катастрофического отказа, если рабочая жидкость должна кристаллизоваться или испытывать другое препятствие прохождению потока. По этой причине тепловой насос, как правило, работает при максимальной концентрации раствора, установленной для использования в условиях, которые достаточно далеки от условия кристаллизации, и определяемой желанием скорее предотвратить кристаллизацию, чем обеспечить максимальную эффективность насоса. Мы разработали модификацию, которая начинает корректирующее воздействие при обнаружении начала кристаллизации, обеспечивая, таким образом, возможность безопасной работы теплового насоса в условиях, близких к состоянию кристаллизации.

В соответствии с одним аспектом, настоящее изобретение обеспечивает создание абсорбционного теплового насоса, содержащего средство, чувствительное к началу кристаллизации абсорбента в рабочей жидкости или к началу недопустимо высокой вязкости, для введения в действие средства для предотвращения дальнейшей кристаллизации и/или для растворения кристаллизованного материала или уменьшения указанной вязкости.

Область наибольшей склонности к кристаллизации или препятствованию прохождению потока, как правило, расположена на пути потока жидкого абсорбента в абсорбер из теплообменника раствора, где имеет место самая низкая температура и самая высокая концентрация.

Средство для предотвращения кристаллизации или уменьшения вязкости может содержать средство для создания клиренса, предназначенное для увеличения температуры и/или уменьшения концентрации абсорбента в рабочей жидкости в указанном месте кристаллизации или вблизи него. Например, поток жидкости может быть отведен, по меньшей мере временно, для увеличения температуры потока, проходящего в указанном месте кристаллизации, либо прямо, либо косвенно посредством теплообмена. Этот процесс может быть активирован посредством определения локального давления в точке, расположенной выше по технологической цепочке от места кристаллизации.

Один способ предусматривает передачу тепла жидкому абсорбенту, проходящему в противоположном направлении, через посредство теплообменника раствора, когда жидкий абсорбент проходит от парогенератора к абсорберу, причем часть жидкого абсорбента, проходящего по пути от генератора к абсорберу, которая будет иметь относительно высокую температуру, отводится для введения в обратный поток из абсорбера к генератору. В этом случае, температура обратного потока увеличивается, что увеличивает температуру потока выше по технологической цепочке от места кристаллизации, приводя благодаря этому к растворению кристаллов или уменьшению вязкости жидкости в указанном месте.

Такой отвод может быть достигнут посредством монтажа чувствительного к давлению регулятора, например, клапана или порога между этими двумя потоками, благодаря которому указанный отвод начинается тогда, когда противодавление, вызванное началом кристаллизации или недопустимо высокой вязкости, превышает предварительно заданное пороговое значение.

В альтернативном случае, жидкий хладагент может быть отведен от конденсатора к испарителю для повышения благодаря этому температуры испарения, заставляя испарять повышенное количество хладагента и захватываться абсорбентом, приводя к временному уменьшению концентрации абсорбента в рабочей жидкости и к увеличению температуры рабочей жидкости в области кристаллизации.

Дополнительная проблема заключается в поддержании целесообразно высокой эффективности при работе теплового насоса при менее чем полной мощности, при уменьшении подъема температуры и/или тепловой нагрузки. Подъем температуры определяется как разность температур испарителя и абсорбера. Мы установили, что можно увеличить эффективность цикла в условиях неполной нагрузки путем регулировки скорости потока жидкого абсорбента в течение цикла в соответствии с тепловой нагрузкой и/или подъемом температуры. Кроме того, мы обнаружили, что можно создать такую конструкцию теплового насоса, чтобы динамическое или статическое давления в насосе способствовали регулировке скорости потока жидкого абсорбента для соответствия превалирующему подъему температуры или тепловой нагрузке, исключая, таким образом, необходимость применения поддающихся регулировке регулирующих клапанов или аналогичных устройств, хотя мы не исключаем возможность применения таких регулирующих устройств.

Читайте также:  Тепловой насос как электростанция

В соответствии с другим аспектом настоящее изобретение обеспечивает создание абсорбционного теплового насоса, содержащего парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой так, чтобы обеспечить пути (циклического прохождения потока жидкости) для жидкого летучего компонента и жидкого абсорбента для него, и регулятор скорости потока для регулировки скорости потока указанного жидкого абсорбента в соответствии по меньшей мере с одним из параметров: (а) разность температур между абсорбером и испарителем, (б) тепловая нагрузка на тепловой насос, а также (в) одним или более других рабочих параметров.

Скорость потока может быть отрегулирована различными способами, но предпочтительным является способ регулировки без изменения мощности насоса. Таким образом, регулятор скорости потока может обычно содержать средство для ограничения потока, расположенное на пути потока жидкого абсорбента от указанного генератора. Ограничение может регулироваться так, чтобы обеспечивать требуемые эксплуатационные характеристики посредством применения активной системы регулировки, но мы установили, что адекватное регулирование может быть достигнуто посредством пассивного ограничителя, например, отверстия, завихрителя, капиллярной трубки или комбинированием некоторых или всех этих устройств.

Предпочтительно, чтобы конструкция теплового насоса была такой, чтобы скорость потока жидкого абсорбента из генератора зависела от перепада рабочего давления на каждом конце пути жидкого абсорбента от генератора и/или от перепада избыточного давления вследствие какого-либо различия между уровнями свободных поверхностей в жидком абсорбенте на каждом конце пути жидкости от генератора.

Таким образом, тепловой насос и характеристики потока ограничителя могут быть сделаны такими, чтобы обеспечить соответствующую скорость потока, которая изменяется в зависимости от рабочих давлений для обеспечения изменения скорости потока для соответствия рабочим условиям, как описано ниже со ссылкой на фиг. 6. Аналогичным образом, на каждом конце пути жидкости от генератора могут быть установлены емкости, причем эти емкости имеют такие размеры и расположены так, чтобы обеспечивать уровни свободных поверхностей на выбранных высотах или на расстояниях в радиальном направлении, чтобы в процессе работы дать требуемый перепад избыточного давления.

В одном характерном примере, генератор содержит емкость в виде загрузочной камеры, в которой жидкий абсорбент улавливается перед входом в генератор, и которая ограничивает свободную поверхность, и путь жидкости от генератора заканчивается в желобе, смежном абсорберу, причем загрузочная камера расположена так, чтобы при нормальной работе уровень свободной поверхности жидкости в ней был выше (или находился дальше в радиальном направлении внутрь) относительно свободной поверхности жидкости в желобе.

В альтернативном варианте, конец пути жидкого абсорбента ниже по технологической цепочке от генератора может заканчиваться в выпускном отверстии, которое, как правило, выше поверхности жидкости в емкости, связанной с ним, которое улавливает жидкость, выпускаемую из него, в соответствии с чем высота выпускного отверстия определяет избыточное давление на выходе.

Как сказано выше, может быть осуществлено активное регулирование скорости потока жидкого абсорбента. Таким образом, указанный регулятор скорости потока может содержать один или более датчиков для определения или предсказания одного или более рабочих параметров устройства и средство, чувствительное к указанным датчикам, для регулировки в соответствии с этим скорости потока указанного жидкого абсорбента.

Другие трудности, связанные с применением центробежных тепловых насосов, включают в себя различные насосные устройства, каждое из которых, как правило, содержит червячный насос, который ограничен в отношении вращения, когда вращается тепловой насос, и который черпает жидкость из кольцевого желоба или емкости и подает ее туда, куда надо. В типовой конструкции червячного насоса, при запуске тепловой насос сначала неподвижен и жидкость будет уловлена в нижней дуге желоба, имеющего глубину в радиальном направлении, которая гораздо больше, чем при вращении теплового насоса. Червячный насос представляет собой качающуюся массу, причем это означает, что насос также находится в нижней части желоба, погруженным в жидкость. Следовательно, при запуске появляется большая сила сопротивления движению червячного насоса, возникающая при взаимодействии жидкости в желобе с червячным насосом, которая уменьшает эффективность теплового насоса и задерживает начало установившегося режима работы. Мы разработали новый вид червячного насоса, который позволяет значительно уменьшить сопротивление при запуске, имеющее место в обычных конструкциях. Конструкция также имеет преимущество в том отношении, что уменьшает постоянную массу, как у обычных червячных насосов, и таким образом уменьшает ударные нагрузки, которые, вероятно, испытывает червячный насос в транспорте.

В соответствии с этим, в другом аспекте настоящее изобретение обеспечивает получение абсорбционного теплового насоса, содержащего вращательный узел, включающий в себя парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой так, чтобы обеспечивать пути циклического потока жидкости для летучего компонента и жидкого абсорбента, причем одно из указанных устройств (указанные генератор, испаритель и указанный абсорбер) включает в себя червячный насос, содержащий качающийся элемент, установленный с возможностью поворота в указанном узле, ограниченный от вращения с указанным узлом и предназначенный при использовании для улавливания жидкости из желоба, как правило, периферийно расположенного, или из емкости, при этом указанный качающийся элемент включает в себя качающийся контейнер, эксцентричный относительно оси вращения указанного узла, для заливки жидкости из указанного желоба или емкости, когда насос находится в состоянии покоя.

Это устройство имеет несколько важных преимуществ. Поскольку часть жидкости будет находиться в качающемся контейнере, в желобе будет меньше жидкости и, следовательно, значительно уменьшаются силы сопротивления, возникающие при запуске насоса. Кроме того, жидкость в качающемся контейнере увеличивает массу червячного насоса в стационарном состоянии, что означает увеличение инерции и по этой причине — меньшее влияние сил сопротивления.

В указанную емкость может поступать жидкость из желоба через отверстие без нагнетания посредством насоса, но предпочтительно, чтобы указанный червячный насос содержал средство для подачи по меньшей мере части жидкости, улавливаемой посредством него, в указанный качающийся контейнер.

Таким образом, при работе указанного насоса в установившемся режиме, масса жидкости в указанном качающемся контейнере может обеспечивать значительную или основную часть массы указанного качающегося элемента. Качающийся контейнер может содержать сливное дренажное средство для обеспечения возможности слива части жидкости в указанном контейнере назад в указанные желоб или емкость. Таким образом, в типовом варианте осуществления, при работе указанного теплового насоса в установившемся состоянии при горизонтальном расположении оси вращения, указанный контейнер по меньшей мере частично погружен в жидкость, содержащуюся в указанном желобе или емкости и по меньшей мере частично наполнен жидкостью.

Очевидно, что такое устройство червячного насоса может быть использовано вместо любого из червячных насосов, применяемых в обычных центробежных тепловых насосах. Насосы, соответствующие этому аспекту настоящего изобретения, обеспечивают также важное средство обеспечения емкости для начального буфера для любого желоба, содержащего жидкость, и в частности, содержащего поддающиеся изменению количества жидкости для обеспечения возможности регулировки концентрации жидкого абсорбента, как будет описано ниже.

Мы также разработали устройство, которое регулирует относительные доли абсорбента и летучих компонентов в смеси для согласования с рабочими параметрами. И в этом случае, это может быть достигнуто посредством измерения температуры и применения одного или более регулирующих клапанов, но мы установили, что можно обеспечить регулировку концентрации абсорбента посредством приемлемой конструкции насоса, так что в зависимости от рабочих параметров, поддающееся изменению количество хладагента вынуждено храниться в емкости, обеспечивая благодаря этому соответствующую регулировку концентрации раствора. Мы также разработали это устройство, чтобы обеспечить дополнительную возможность ограничения максимальной концентрации раствора.

В соответствии с этим, в другом аспекте настоящее изобретение обеспечивает получение абсорбционного теплового насоса, имеющего рабочую жидкость (содержащую абсорбент и летучий компонент), содержащего средство для регулировки концентрации указанного абсорбента в указанной рабочей жидкости в соответствии по меньшей мере с (а) разностью температур абсорбера и испарителя или (б) в соответствии указанной рабочей жидкости с тепловой нагрузкой на указанный тепловой насос, а также (в) в соответствии с одним или более других рабочих параметров.

Предпочтительно, чтобы концентрация регулировалась посредством изменения количества летучего компонента, хранимого в подвижном буфере.

Таким образом, указанное средство для регулировки концентрации может включать в себя одну или более емкостей для хранения поддающегося изменению количества летучего компонента и/или жидкого абсорбента и средство для нагнетания жидкости в указанную емкость и для откачивания жидкости из указанной емкости для регулировки указанной концентрации.

В процессе работы, количество летучего компонента, испаряемого посредством испарителя при конкретном подъеме температуры, является функцией концентрации жидкого абсорбента. Когда скорость испарения уменьшается, больше жидкости улавливается в испарителе и, в этом аспекте настоящего изобретения, избыток жидкости хранится в буфере, уменьшая, таким образом, долю летучего компонента в смеси, подаваемой в абсорбер и, таким образом, приводя к увеличению скорости испарения.

В особом варианте осуществления, подвижные буферы смеси и летучего компонента хранятся в соответствующих емкостях, как правило, в генераторе и испарителе, хотя, безусловно, возможны другие места хранения. Подвижные емкости могут удобно содержать качающиеся контейнеры, как указано выше, которые увеличивают инерцию червячных насосов.

Предпочтительным является ограничение концентрации рабочей жидкости в тепловом насосе. Например, буфер летучего компонента может содержать переливные средства, которые ограничивают максимальное истощение циркулирующей смеси путем ограничения количества хладагента, который может храниться в качающемся контейнере в испарителе. Таким образом, переливное средство может пропускать жидкий летучий компонент из указанной подвижной емкости в поток жидкого абсорбента, подаваемого к абсорберу, когда концентрация превышает заданный предел или приближается к нему. Это может быть определено в связи с количеством хладагента в указанной подвижной емкости и/или улавливающимся смежно указанному испарителю.

Дополнительным источником неэффективности центробежных тепловых насосов, как мы обнаружили, является склонность узлов червячного насоса к колебаниям вокруг оси вращения, если уровень жидкости в соответствующем желобе падает ниже впускного патрубка червячного насоса, и такие колебания могут значительно повлиять на эффективность насоса. Принимая это во внимание, мы разработали различные устройства, посредством которых колебания могут быть погашены.

В соответствии с другим аспектом, настоящее изобретение обеспечивает получение абсорбционного теплового насоса, включающего в себя вращательный узел, содержащий парогенератор, конденсатор, испаритель и абсорбер, причем указанный тепловой насос содержит червячный насос, установленный с возможностью вращения в указанном узле, но ограниченный от вращения с ним, указанный червячный насос имеет впускное отверстие для улавливания жидкости из периферийного желоба или емкости, которая вращается относительно указанного червячного насоса, указанный насос включает в себя стабилизирующее средство, стабилизирующее указанный червячный насос в основном, но не исключительно, если уровень жидкости в указанном желобе или емкости ниже указанного впускного отверстия.

Стабилизирующее средство может быть различных видов. В одном примере, указанное стабилизирующее средство может содержать приспособление, ограничивающее направляющую, которая в свою очередь ограничивает движение подвижного груза, который установлен с возможностью гашения раскачивания указанного червячного насоса. В этом случае, колебания могут быть легко погашены в результате рассеяния энергии, вызываемого силами сопротивления движения груза по указанной направляющей. Направляющая предпочтительно является изогнутой, причем ее выпуклая поверхность в вертикальном направлении выше или ниже центра тяжести и вала.

В альтернативном варианте, указанное стабилизирующее средство может содержать средство, создающее гидродинамическое сопротивление, например, ребро или другую поверхность, обладающую повышенным гидродинамическим сопротивлением, или дополнительное впускное средство для дополнительного червячного насоса.

Дополнительная трудность, с которой могут столкнуться, в частности, при запуске центробежного теплового насоса, заключается в том, что запасы жидкости в системе могут быть такими, что не обеспечивается достаточного потока смеси к генератору. Это может привести к сильному перегреву и разрушению стенки генератора. Принимая это во внимание, мы разработали новое устройство, которое гарантирует то, что насос, обеспечивающий поток смеси к генератору, имеет приоритетный доступ к рабочей смеси.

В еще одном аспекте, настоящее изобретение обеспечивает получение абсорбционного теплового насоса, содержащего вращательный узел, включающий в себя парогенератор, конденсатор, испаритель и абсорбер, которые соединены между собой так, чтобы обеспечивать пути (циклического потока жидкости) для жидкого летучего компонента и жидкого абсорбента для него, насос (обеспечивающий поток смеси к генератору) для нагнетания жидкого абсорбента на нагретую поверхность указанного генератора, насос (обеспечивающий поток смеси от генератора) для улавливания и откачивания жидкости, стекающей с поверхности указанного генератора, и средство для гарантии того, что указанный насос, обеспечивающий поток смеси к генератору, имеет адекватную подачу жидкости для смачивания поверхности указанного генератора в начале работы теплового насоса.

Средство, гарантирующее адекватную подачу жидкости, предпочтительно содержит общую емкость, в которую в процессе работы поступает жидкий абсорбент, стекающий с указанной поверхности генератора, и жидкий абсорбент для распыления на указанную поверхность генератора, а указанный насос, обеспечивающий поток смеси к генератору, и указанный насос, обеспечивающий поток смеси от генератора (предпочтительно каждый), принимают жидкий абсорбент из указанной общей емкости, причем указанный насос, обеспечивающий поток смеси к генератору, имеет к ней приоритетный доступ. В одном варианте осуществления, указанные насосы, обеспечивающие поток смеси к генератору и от генератора, являются червячными насосами, указанная емкость — периферийным желобом, а впускной патрубок червячного насоса, обеспечивающего поток смеси к генератору, проходит в радиальном направлении дальше от оси вращения, чем впускной патрубок насоса, обеспечивающего поток смеси от генератора. Насос, обеспечивающий поток смеси к генератору, и насос, обеспечивающий поток смеси от генератора, могут представлять собой один насос с разделением потока выше по технологической цепочке.

Другой аспект настоящего изобретения обеспечивает получение абсорбционного теплового насоса, содержащего вращательный узел, включающий в себя парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой так, чтобы обеспечивать пути циклического потока жидкости для жидкого летучего компонента и жидкого абсорбента, а также содержащий общую емкость для улавливания жидкого абсорбента, стекающего с нагретой поверхности указанного генератора, и для приема жидкости, предназначенной для подачи к нагреваемой поверхности генератора.

Другой трудностью, с которой сталкиваются в центробежных тепловых насосах типа, описанного в патенте США N 5009085, является обеспечение эффективного массо- и теплопереноса к жидкому хладагенту в конденсаторе и абсорбере. В соответствии с этим ранним патентом, абсорбер и конденсатор содержали диск абсорбера и диск конденсатора на каждой из боковых сторон перегородки, а поверхности, поверх которых соответственно проходит смесь и вода, были ограничены плоскими пластинами, соответствующими тогдашнему пониманию центробежной интенсификации процесса, как было описано ранее в европейском патенте ЕР-В-119776. Однако мы обнаружили, что теплообменники могут быть выполнены из спиральной трубы и к удивлению это обеспечивает эффективное увеличение тепло- и массопереноса в центробежных насосах.

В соответствии с другим аспектом, настоящее изобретение обеспечивает получение абсорбционного центробежного теплового насоса, содержащего узел, включающий в себя парогенератор, конденсатор, испаритель и абсорбер, причем один или более из этих устройств (конденсатор, испаритель и абсорбер) содержат теплообменник, ограниченный спиралью трубы или имеющий гофрированную наружную поверхность.

Читайте также:  Формула подбора мощности насоса

Эта спираль может быть, как правило, замкнута промежуточными витками спирали, находящимися в контакте, или замкнута как со следующим внутренним, так и со следующим наружным витком, для ограничения теплообменника с двумя прерывистыми или гофрированными поверхностями. Труба имеет предпочтительно уплощенное круглое поперечное сечение, причем уплощенные части расположены близко друг к другу или к областям, находящимся во взаимном контакте. Спираль может быть плоской или тарельчатой.

В обычных тепловых насосах внутренняя атмосфера содержит воздух и коррозия ведет к образованию свободного газообразного водорода, который ухудшает абсорбцию летучего компонента жидким абсорбентом, ухудшая, таким образом, эффективность насоса. С этим можно бороться путем регулярной откачки теплового насоса, но это является трудоемкой и потенциально опасной операцией и, таким образом, не рекомендуемой для промышленного применения. Альтернативной возможностью является применение палладиевых штырей, но они дороги и также требуют нагревателей и соответствующего оборудования. Однако мы обнаружили, что путем тщательного выбора материалов можно значительно уменьшить количество водорода, который обычно выделяется, и обеспечить получение относительно недорогого и простого устройства для поглощения свободного водорода с тем, чтобы он не ухудшал экплуатационные характеристики теплового насоса.

В соответствии с этим, в другом аспекте настоящего изобретения обеспечивается абсорбционный тепловой насос, содержащий подложку из материала, который в процессе применения способен поглощать и/или связывать молекулы водорода.

Материал подложки содержит вещество, поддающееся гидрогенизации, включающее в себя приемлемый катализатор. Примерами пригодных материалов, поддающихся гидрогенизации, являются материалы на основе способных к химическому восстановлению органических полимеров, поддающихся гомогенно катализируемой гидрогенизации. Типовая комбинация содержит стирол-бутадиеновый триблоксополимер (полистирол-полибутадиен-полистирол), например, Kraton D1102, поставляемый из Shell Chemical Company, и иридиевый катализатор, например, Crabtree Catalist, описываемый ниже, или рениевый катализатор. Квалифицированным в этой области техники специалистам известно много других пригодных материалов, обладающих аналогичными свойствами. Предпочтительно, чтобы подложка содержала индикатор, который бы указывал на состояние материала, к которому он приближается, в котором он насыщен водородом или по другим причинам больше не способен связывать или поглощать водород.

Мы также разработали систему обеспечения защиты для сброса избыточных давлений в тепловом насосе, но которая также неожиданно позволила обеспечить длительную и/или продленную эксплуатацию теплового насоса.

В этом аспекте настоящего изобретения, соответственно, обеспечивается получение абсорбционного теплового насоса, содержащего камеру генератора/промежуточного конденсатора, находящуюся под высоким давлением, камеру промежуточного генератора/конденсатора, находящуюся под промежуточным давлением, и камеру абсорбера и испарителя, находящуюся под низким давлением, и включающий в себя редукционное средство, расположенное между (а) указанной камерой высокого давления и указанной камерой промежуточного давления и/или (б) указанной камерой промежуточного давления и указанной камерой низкого давления.

Редукционное средство предпочтительно обеспечивает регулируемое понижение давления, благодаря чему поток через указанное редукционное средство является зависимым от перепада давления. В одном примере, когда перепад давления достигает заданного уровня, редукционное средство открывается и скорость потока увеличивается с увеличением перепада давления. В этом случае рабочий диапазон устройства расширяется и оно может работать как одноступенчатый тепловой насос и возвращаться к двухступенчатому режиму работы, когда перепад давления снова становится ниже заданного уровня.

Известно, что абсорбенты на основе гидроксида, включая те, которые описаны в европейском патенте ЕР-А-208427, являются очень агрессивными, особенно при высоких температурах, при которых работает камера сгорания, и что надо быть очень осторожным при выборе материалов, из которых сделан герметичный кожух, ограничавающий вращательный узел и внутренние компоненты. До настоящего времени стенки и компоненты делали из медноникелевых сплавов, например, из монеля, имеющих значительное содержание никеля и других металлов. Однако мы обнаружили, отчасти к своему удивлению, что несмотря на то, что это казалось бы противоречит здравому смыслу, фактически можно применять медь и медные сплавы, содержащие менее 15 мас.% других металлических компонентов сплава.

В дополнительном аспекте настоящего изобретения, соответственно, обеспечивается получение абсорбционного теплового насоса, содержащего герметичный кожух, содержащий рабочую жидкость, содержащую один или более гидроксидов щелочного металла, причем по меньшей мере часть указанного кожуха, которая находится в контактном взаимодействии с указанной рабочей жидкостью, выполнена из медного материала, содержащего до 15 мас.% добавок, например, таких как хром, алюминий, железо и другие металлы.

Предпочтительно, чтобы по существу весь кожух был выполнен из указанного медного материала.

Указанный медный материал предпочтительно содержит медноникелевый сплав. Мы обнаружили, что медноникелевые сплавы с низким содержанием никеля, которые, как бы следовало ожидать, должны бы были сильно корродировать при контактном взаимодействии с жидким гидроксидом, фактически обладают высоким сопротивлением коррозии даже при высоких температурах в парогенераторе.

Настоящее изобретение может быть распространено на любую комбинацию обладающих признаком изобретения элементов, описанных в этой заявке выше или в следующем ниже описании со ссылкой на прилагаемые чертежи. В частности, определенные элементы могут, где позволяет контекст, быть использованы в центробежных и нецентробежных тепловых насосах, а также в одноступенчатых или многоступенчатых тепловых насосах по отдельности или в комбинации друг с другом. Настоящее изобретение распространяется также на способы работы абсорбционных тепловых насосов в соответствии с принципами, описанными выше и в приведенном ниже описании. Таким образом, в дополнительном аспекте настоящее изобретение обеспечивает способ работы абсорбционного теплового насоса, предусматривающий текущий контроль рабочей жидкости для обнаружения или предсказания начала кристаллизации абсорбента в рабочей жидкости или начала недопустимо высокой ее вязкости и, при обнаружении или предсказании любого из вышеуказанных состояний, предусматривающий инициирование превентивных мер для предотвращения дальнейшей кристаллизации и/или растворения кристаллизованного материала или для уменьшения указанной вязкости.

Предпочтительно, чтобы указанная операция инициирования содержала отвод потока жидкости (например, теплой рабочей жидкости) по меньшей мере временно для увеличения температуры смежной области, склонной к кристаллизации или к увеличению вязкости. Там, где рабочая жидкость содержит жидкий абсорбент, поддающийся кристаллизации, указанная операция инициирования может предусматривать по меньшей мере временное уменьшение концентрации жидкого абсорбента в области, смежной или находящейся выше по технологической цепочке от области, склонной к кристаллизации.

В дополнительном аспекте настоящее изобретение обеспечивает способ работы абсорбционного теплового насоса, содержащего парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой так, чтобы обеспечить пути (циклического потока жидкости) для жидкого летучего компонента и жидкого абсорбента для него, который предусматривает регулировку скорости потока в соответствии по меньшей мере с одним из параметров: (а) разность температур между абсорбером и испарителем,
(б) величина тепловой нагрузки на тепловой насос, и
(в) в соответствии с одним или более других рабочих параметров.

Теперь настоящее изобретение будет подробно описано на примере теплового насоса с различными его модификациями со ссылкой на сопроводительные чертежи, где
Фиг. 1 — принципиальная схема устройства двухступенчатого теплового насоса, соответствующего настоящему изобретению, не ограничивающего температуры и давление, которые приведены только для иллюстрации.

Фиг. 2 — схематический вид сбоку теплового насоса, соответствующего настоящему изобретению, на котором показаны основные компоненты теплового насоса, но для простоты иллюстрации не показаны некоторые межсоединения, компоненты и рабочая жидкость.

Фиг. 3 — пример демпфирующего устройства для применения с червячным насосом в модификации теплового насоса, показанного на чертежах.

Фиг. 4 — другой пример демпфирующего устройства для применения с червячным насосом.

Фиг. 5 — принципиальная схема, иллюстрирующая возможную (чувствительную к давлению) регулировку потока, предназначенную для уменьшения возможности кристаллизации в потоке жидкого абсорбента, проходящем между генератором и абсорбером.

Фиг. 6 — идеализированная диаграмма, представляющая оптимальные концентрации раствора и температуры других элементов теплового насоса для установки температуры испарителя и двух разных температурных подъемов.

На фиг. 1 и 2 иллюстрируется вариант осуществления теплового насоса, соответствующего настоящему изобретению, который содержит герметично уплотненный модуль 10, приводимый во вращение валом 12 и ограничивающий область 14 высокого давления, область 16 промежуточного давления и область 18 низкого давления. Термины «высокое давление», «промежуточное давление» и «низкое давление» относятся к давлениям в этих областях при работе теплового насоса. Внутренняя область теплового насоса не содержит воздух в процессе его работы. Как показано, область 14 высокого давления слева ограничена стенкой, действующей как парогенератор 20, которая нагрета с наружной стороны посредством камеры сгорания 22. На своей другой стороне, область 14 высокого давления ограничена стенкой, которая ограничивает конденсатор 24 на своей поверхности высокого давления и промежуточный парогенератор 26 на другой поверхности и которая также ограничивает левый конец области 16 промежуточного давления. Дополнительная стенка 27 расположена в области 14 высокого давления, расположенной между парогенератором 20 и конденсатором 24, и ограничивает загрузочную камеру 28, предназначенную для улавливания жидкости из патрубка 30 генератора ((прим. пер.) на сопроводительных чертежах к описанию на английском языке, вероятно, ошибочно ссылочный номер «30» не указан), как описано ниже.

Область 16 промежуточного давления отделена от области низкого давления перегородкой 32 и содержит спаренный змеевик 34 конденсатора и первый и второй теплообменники 36 и 38 раствора, соответственно. Область 18 низкого давления содержит змеевик 40 абсорбера и спаренный змеевик 42 испарителя.

В процессе работы, богатая водой смесь воды и гидроксидов щелочного металла отчерпывается из общего желоба 44 к и от генератора посредством впускного патрубка 46 червячного насоса, обеспечивающего поток смеси к генератору, и выходит из напорного патрубка 48 к генератору на парогенератор 20 для растекания по (его) поверхности. Часть летучего компонента (вода) испаряется и проходит к конденсатору 24. Оставшаяся, бедная водой смесь «L» улавливается в желобе 44 к генератору и от генератора. Впускной патрубок 46 червячного насоса, обеспечивающего поток смеси к генератору, образует часть узла 50 червячного насоса взвешенной жидкости и будет более подробно описан ниже. Впускной патрубок 52 червячного насоса, обеспечивающего поток смеси к генератору, является частью того же узла, но расположенной в радиальном направлении внутрь относительно впускного патрубка 46 червячного насоса, обеспечивающего поток смеси к генератору. Червячный насос, обеспечивающий поток смеси от генератора, нагнетает смесь «L» в кольцевую загрузочную камеру 28, откуда смесь проходит по трубе (не показана) в охладительный проходной канал первого теплообменника 36 раствора, где она отдает тепло смеси «R», проходящей в другой ветви и вокруг для возврата к желобу 44 к генератору и от генератора, от промежуточного парогенератора 26 (см. фиг. 1). После прохождения через охладительный проходной канал первого теплообменника 36 раствора, смесь «L» проходит через охладительный проходной канал второго теплообменника 38 раствора, где он отдает тепло жидкости на другой ветви, которая проходит от абсорбера 40 пара к промежуточному парогенератору 26. Из охладительного проходного канала смесь «L» проходит через ограничитель 54 потока (см. фиг. 1) и отсюда в кольцевой желоб 56, образованный на боковой поверхности перегородки 32 абсорбера. Отсюда смесь улавливается посредством впускного патрубка 58 червячного насоса, обеспечивающего поток смеси к абсорберу, и нагнетается через напорный патрубок 60 на змеевик абсорбера 40, где она поглощает летучий компонент из испарителя 42.

Смесь, которая теперь богата водой, улавливается в желобе 62 из абсорбера, откуда ее нагнетают в загрузочную камеру 64, образованную как кольцевой желоб на перегородке 32, в радиальном направлении внутрь желоба 56 на абсорбере, через посредство впускного патрубка 66 червячного насоса, обеспечивающего поток смеси от абсорбера, и напорного патрубка 68. Червячные насосы, обеспечивающие поток смеси к абсорберу и от абсорбера, являются частью общего узла 65.

Из загрузочной камеры 64 богатая водой смесь проходит к нагревательному проходному каналу теплообменника 38 второго раствора, где она нагревается и затем поступает к желобу 70 на промежуточном генераторе. Оттуда жидкость улавливается посредством впускного патрубка 72 червячного насоса, обеспечивающего поток смеси к промежуточному генератору, и выпускается посредством напорного патрубка 74 по направлению к центру промежуточного генератора 26, где он принимает теплоту от промежуточного конденсатора 24 на другой поверхности той же стенки. Часть летучего компонента испаряется посредством промежуточного парогенератора 26 и проходит к змеевиковому конденсатору 34 первичного конденсатора. Жидкая смесь, выходящая из промежуточного парогенератора 26, улавливается в желобе 76, откуда она вычерпывается посредством впускного патрубка 78 насоса, обеспечивающего поток смеси от промежуточного генератора, и подается через посредство напорной трубы 80 к нагревательному проходному каналу первого теплообменника 36 раствора, где она нагревается и затем возвращается к общему желобу 44 генератора. Червячные насосы, обеспечивающие поток смеси к промежуточному генератору и от него, образуют часть общего узла, смонтированного на валу 12. Для ясности иллюстрации не показаны соединения потока с теплообменниками раствора.

При рассмотрении цикла прохождения потока летучего компонента очевидно, что часть летучего компонента испаряется в области 14 высокого давления, когда смесь проходит поверх парогенератора 20, и газообразный летучий компонент конденсируется на поверхности промежуточного конденсатора 24. После этого конденсированный жидкий летучий компонент через дроссель 82 (см. фиг. 1) проходит к первичному конденсатору 34 в области 16 промежуточного давления.

Из первичного конденсатора 34 жидкий летучий компонент проходит через дополнительный дроссель 84 к желобу 86 на испарителе в области 18 низкого давления. Здесь жидкость улавливается посредством впускного патрубка 88 червячного насоса 89, обеспечивающего поток смеси к испарителю, и нагнетается через посредство напорной трубы 90 на змеевик 42 испарителя. Оттуда испаренный газообразный летучий компонент проходит к змеевику абсорбера 40, где он снова абсорбируется в смесь, и затем следует по пути смеси. Второй впускной патрубок 92 червячного насоса ограничивает уровень жидкого летучего компонента в желобе 86 посредством откачивания избытка жидкого летучего компонента в контейнер 102, который связан с насосом, обеспечивающим поток смеси к испарителю, и который имеет сливное отверстие 94 и переливную трубу 96.

Правый конец вала 12 разделен на пропускные каналы 103, 105 для обеспечения пути потока жидкого хладагента, например, воды, который проходит в центре вала, циркулирует в спаренных змеевиках первичного конденсатора 34 и затем в змеевике 40 абсорбера и выходит из вала. Поток через змеевики 34 конденсатора начинается, как очевидно, во внутренней части левого змеевика, проходит по спирали в направлении наружу, затем возвращается внутрь и выходит. В змеевиковом абсорбере 40 поток начинается в наружной части змеевика и проходит по спирали по направлению внутрь.

Аналогичным образом, контур (не показан) охлажденной жидкой воды подает и улавливает охлажденную воду из змеевиков 42 испарителя.

Теперь, когда описано общее устройство, будут описаны некоторые конкретные усовершенствования или модификации.

Регулировка скорости потока смеси абсорбента
Скорость потока смеси абсорбента в тепловом насосе регулируют посредством ограничителя 54 потока в линии между вторым теплообменником 38 раствора и желобом 56 на абсорбере, связанным с абсорбером 40 пара.

Читайте также:  Опрессовка системы отопления в частном доме своими руками насосом малыш

Ограничитель 54 потока может быть отверстием, капиллярной трубкой, завихрителем или жиклером, а скорость потока через ограничитель 54 определяется давлением, действующим через него. Таким образом, скорость потока зависит от соответствующих давлений, а не от производительности насоса, обеспечивающего поток смеси от генератора, как прежде. По этой причине скорость потока будет модулирована перепадом давления между областями 14, 18 высокого и низкого давления, соответственно, а также определяющим давление расстоянием (клиренсом) между свободной поверхностью загрузочной камеры 28 и свободной поверхностью желоба на абсорбере. Скорость потока абсорбента будет автоматически увеличиваться, когда увеличивается перепад давления между областями 14 и 18. Характеристики ограничителя 54, характер перепада давления между областями 14 и 18, а также расположение и емкость загрузочной камеры 28 и желоба 56 выбирают такими, чтобы обеспечить требуемое изменение скорости потока в зависимости от режима работы.

Минимальный расход в требуемых условиях работы, как правило, устанавливают, принимая во внимание кристаллизацию, но какой-либо запас выше этого уменьшает эффективность теплового насоса вследствие повышенных потерь в теплообменниках раствора. С точки зрения термодинамики, наилучшая эффективность будет получена, когда концентрации абсорбента достаточна только для поддержания подъема температуры, требуемого циклом. В этих условиях различные факторы будут определять требуемый удельный массовый расход абсорбента. В системах, в которых применяют воду в качестве хладагента и неорганическую соль в качестве абсорбента, минимальный расход при данном подъеме температуры может быть ограничен посредством максимальной концентрации раствора, которая может быть допустимой перед началом кристаллизации.

На фиг. 6 показаны типовые характеристики идеальной жидкости, где можно видеть, что температуры абсорбера и конденсатора составляют 58 o С, а смесь при данной концентрации раствора может абсорбировать хладагент при температуре 4 o C. Такая концентрация раствора может быть очевидной для идеального цикла, показанного для получения температуры 200 o C генератора. Когда температуры абсорбера и конденсатора опускаются до 35 o C, то можно видеть, что, если концентрация раствора уменьшается так, чтобы удовлетворять новым условиям, то температура генератора падает до 117 o C.

Это означает, что для данного массового расхода абсорбента в цикле, тепловые потери в теплообменниках также вероятно должны упасть. Кроме того, такая более низкая концентрация также существенно уменьшит температуру кристаллизации, позволяющую уменьшить скорость потока (а следовательно, более высокий диапазон концентрации раствора). Система управления, описанная в этой заявке, для дополнительного улучшения эксплуатационных характеристик обеспечивает как автоматическую регулировку концентрации, так и регулировку массового расхода.

Червячные насосы взвешенной жидкости
Общий узел 50 насоса, обеспечивающего поток смеси к генератору и от генератора, содержит качающийся контейнер 98, подвешенный на валу 12 посредством подшипника цапфы, в который подается жидкость из общего желоба 44 посредством впускного патрубка 100, который находится в радиальном направлении внутрь от впускных патрубков 46 и 52. Это означает, что в процессе работы часть жидкости, нормально удерживаемой в желобе на генераторе, удерживается в качающемся контейнере, делая существенный вклад в постоянную массу насосного узла 50. При отключении насоса, существенная часть жидкости будет, как правило, улавливаться в желобе 44 и смещаться качающейся массой качающегося контейнера для насосного узла. В соответствии с иллюстрируемым устройством, когда насос неподвижен, жидкость остается в нем или проходит в качающийся контейнер 98 через впускной патрубок 100, уменьшая, таким образом, уровень жидкости в желобе и увеличивая массу насосного узла. Эти элементы делают вклад в значительное уменьшение сопротивления при запуске.

Аналогичным образом, насос 89, обеспечивающий поток смеси к испарителю, содержит качающийся контейнер 102, который действует в качестве качающегося груза и, кроме того, в качестве подвижного демпфера для хладагента, как должно быть описано ниже.

Регулировка концентрации жидкого абсорбента
В устройстве, показанном на фиг. 2, предполагается, что концентрация абсорбента регулируется автоматически в соответствии со скоростью абсорбции испаренного летучего компонента абсорбером 40. Насос 89, обеспечивающий поток смеси к испарителю, содержит впускной патрубок 92, который откачивает любой избыток жидкого летучего компонента в контейнер 102. Этот жидкий летучий компонент удаляют из циркуляции и таким образом заставляют долю абсорбента в циркулирующей смеси увеличиваться, когда увеличивается содержимое контейнера 102. Имеется регулируемое сливное отверстие 94 назад в желоб 86. Максимальную концентрацию абсорбента ограничивают посредством снабжения емкости 102 переливной трубой 96, которая обеспечивает слив в желоб 62 от абсорбера. Таким образом, концентрация абсорбента автоматически регулируется посредством поддающегося изменению хранения количества жидкого летучего компонента в контейнере 102 и могут быть удовлетворены предварительно описанные требования, предъявляемые к циклу.

Демпфирование червячного насоса
На фиг. 3 показана схематическая конфигурация демпфирующего устройства для червячного насоса, который может быть использован для любого или всех червячных насосов в тепловом насосе, иллюстрируемом на фиг. 2. Насос 104 установлен посредством цапфы на валу 12 и содержит корпус 106 и впускной патрубок 108 червячного насоса. Ниже впускного патрубка 108 червячного насоса предусмотрен тормозной элемент в виде нерабочего впускного патрубка 107. Следовательно, даже если впускной патрубок червячного насоса свободно (с зазором) проходит выше уровня жидкости, нерабочий впускной патрубок 107 еще погружен и, таким образом, обеспечивает важное амортизирующее средство, когда впускной патрубок червячного насоса выходит или повторно входит в жидкость.

В альтернативном устройстве, показанном на фиг. 4, несколько деталей аналогичны деталям, показанным на фиг. 3, и указаны такими же ссылочными номерами. Однако ниже цапфы предусмотрена изогнутая направляющая 110, которая несоосна с валом 12 и которая определяет ограничивающий канал для груза 112. Этот груз ограничен так, чтобы он мог двигаться по направляющей, когда корпус отклоняется вокруг вала, стремясь вернуть корпус в положение равновесия, но с некоторым сопротивлением так, чтобы быстро рассеивалась кинетическая энергия движения маятника. Направляющая может иметь много конфигураций. Это устройство особенно эффективно, когда отсутствует смежная неподвижная конструкция, действующая в качестве репера.

Предотвращение кристаллизации
Как было указано выше, для обеспечения эффективности цикла желательно работать как можно ближе к пределу кристаллизации, но эффекты кристаллизации могут быть катастрофическими. В соответствии с этим, как можно видеть на фиг. 1 и 5, схема отвода потока установлена такой, что как только обнаруживается начало кристаллизации, смесь из парогенератора 20 может быть отведена в точке 112, расположенной по технологической цепочке выше второго теплообменника 38 раствора, для соединения в точке 114 с потоком из абсорбера 40 пара для ввода во второй теплообменник 38 раствора. Это заставляет температуру потока, входящего во второй теплообменник 38 раствора из абсорбера 40 пара, увеличиваться, что увеличивает температуру потока из второго теплообменника раствора к абсорберу пара, в области 116, где вероятнее всего должна начаться кристаллизация.

В устройстве, показанном на фиг. 5, отвод потока регулируется посредством порога 118, чувствительного к давлению. При нормальной работе перепад давления между точками 112 и 114 не достаточен для преодоления высоты, определенной порогом, и, таким образом, между этими точками он не проходит. Однако при начале кристаллизации в области 116, противодавление в точке 112 достаточно велико, чтобы заставлять жидкость течь к точке 114. В этом устройстве ограничитель 54 потока может быть перемещен вверх по технологической цепочке относительно точки 112 отвода потока.

Могут быть использованы различные другие регуляторы потока, и для удобства иллюстрации на фиг. 1 такое регулирующее средство показано в виде регулирующего клапана 120. Этот элемент может быть также использован при работе с рабочими жидкостями, склонными к нежелательным увеличениям вязкости, стремящимся препятствовать движению потока.

Общий желоб к генератору и от него
Будет показано, что различные впускные патрубки 46, 52 и 100 червячного насоса берут жидкость из одного желоба 44, но что впускной патрубок 46 для обеспечения потока смеси к генератору погружен в желоб глубже, чем другие два. Это гарантирует то, что при запуске и в других экстремальных состояниях, насос, обеспечивающий поток смеси к генератору, имеет предпочтительный доступ к жидкости в желобе, уменьшая, таким образом, возможность возникновения такой ситуации, когда поверхность генератора является сухой.

Загрязнение водородом
В иллюстрируемых вариантах осуществления настоящего изобретения по меньшей мере одна из герметичных областей 14, 16, 18 содержит элемент 114 из поддающегося гидрогенизации полимерного материала, в который введен катализатор и который имеет большое сродство к молекулам водорода и который в процессе эксплуатации абсорбирует водород из атмосферы внутри устройства для предотвращения загрязнения жидкого абсорбента на абсорбере.

Типовой комбинацией полимера и катализатора является стиролбутадиеновый триблоксополимер (полистирол-полибутадиен-полистирол), например, Kraton D1102, поставляемый из Shell Chemical Company, и иридиевый катализатор, например, Crabtree Catalist [Ir(COD)(py)(tcyp)]PF6 (где COD — 1,5-циклооктадиен; py — пиридин, tcyp — трициклогексилфосфин). Элемент из такого материала объемом 300 мл модет оказаться достаточным для поглощения свободного водорода в течение несокльких лет эксплуатации.

Понижение давления
Устройство, показанное на фиг. 2, содержит также редукционные клапаны 122, 124, расположенные между областями 14 и 16 высокого и среднего давления, а также областями 16 и 18 среднего и низкого давления, соответственно. Редукционные клапаны обеспечивают плавную модуляцию скорости потока давлением, когда они открыты, позволяя, таким образом, тепловому насосу иметь расширенный рабочий диапазон, работать как одноступенчатый тепловой насос, когда перепад давления через редукционные клапаны превышает давлением открытия клапана, и возвращается к двухступенчатой работе, при возврате давления к нормальному значению.

1. Абсорбционный тепловой насос, отличающийся тем, что он содержит средство, чувствительное к началу кристаллизации абсорбента в рабочей жидкости или к началу недопустимо высокой вязкости, для запуска средства для предотвращения дальнейшей кристаллизации и/или для растворения кристаллизованного материала или для уменьшения указанной вязкости.

2. Абсорбционный тепловой насос по п.1, отличающийся тем, что он содержит средство для создания клиренса, предназначенное для увеличения температуры и/или уменьшения концентрации абсорбента в рабочей жидкости в области, склонной к кристаллизации или увеличению вязкости, или рядом с этой областью.

3. Абсорбционный тепловой насос по п.2, отличающийся тем, что он содержит средство для отвода потока жидкости, по меньшей мере, временно, для увеличения температуры потока, проходящего через указанную область, склонную к кристаллизации или к увеличению вязкости.

4. Абсорбционный тепловой насос по п.2 или 3, отличающийся тем, что указанное средство для создания клиренса выполнено чувствительным к локальному давлению выше по технологической цепочке от области, склонной к кристаллизации или к увеличению вязкости.

5. Абсорбционный тепловой насос по п.2 или 3, отличающийся тем, что он выполнен с возможностью отдачи тепла жидким абсорбентом, проходящим от парогенератора к абсорберу, жидкому абсорбенту, проходящему в противоположном направлении через теплообменник раствора, причем указанный тепловой насос содержит средство для отвода части жидкого абсорбента от потока, проходящего от парогенератора к абсорберу, для введения ее в обратный поток от абсорбера к парогенератору для увеличения благодаря этому температуры потока выше по технологической цепочке от области, склонной к кристаллизации или к увеличению вязкости.

6. Абсорбционный тепловой насос по п.5, отличающийся тем, что указанное средство для отвода содержит чувствительный к давлению регулятор, например клапан или пороговое устройство между двумя потоками, обеспечивающий инициирование указанного отвода, когда противодавление, вызванное началом кристаллизации или недопустимо высокой вязкостью, превышает заданное пороговое значение.

7. Абсорбционный тепловой насос по любому из пп.1 — 3, отличающийся тем, что указанное средство для отвода выполнено с возможностью отвода жидкого хладагента от конденсатора к испарителю для повышения температуры испарения, увеличения в соответствии с этим количества испаряемого и захватываемого абсорбентом хладагента и обеспечения временного уменьшения концентрации абсорбента в рабочей жидкости и увеличения температуры рабочей жидкости в области кристаллизации.

8. Способ работы абсорбционного теплового насоса, отличающийся тем, что он включает в себя текущий контроль рабочей жидкости для обнаружения или предсказания начала кристаллизации абсорбента в рабочей жидкости или начала в ней недопустимо высокой вязкости и при обнаружении или предсказании любого из этих состояний инициирование превентивных мер для предотвращения дальнейшей кристаллизации и/или растворения кристаллизованного материала или для уменьшения указанной вязкости.

9. Абсорбционный тепловой насос, содержащий парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой с обеспечением циклического потока жидкости для жидкого летучего компонента и жидкого абсорбента для него, отличающийся тем, что он содержит регулятор скорости потока указанного жидкого абсорбента в соответствии, по меньшей мере, с одним из параметров: разностью температур между абсорбером и испарителем, тепловой нагрузкой на тепловой насос и одним или более других рабочих параметров.

10. Способ работы абсорбционного теплового насоса, содержащего парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой с обеспечением циклического потока жидкости для жидкого летучего компонента и жидкого абсорбента для него, отличающийся тем, что он включает в себя регулировку скорости потока в соответствии, по меньшей мере, с одним из параметров: разностью температур между абсорбером и испарителем, тепловой нагрузкой на тепловой насос и одним или более других рабочих параметров.

11. Абсорбционный тепловой насос, содержащий вращательный узел, включающий в себя парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой с обеспечением циклического потока жидкости для летучего компонента и жидкого абсорбента для него, отличающийся тем, что, по меньшей мере, одно из указанных устройств, а именно парогенератор, испаритель и указанный абсорбер, включает в себя червячный насос, содержащий качающийся элемент, установленный с возможностью поворота в указанном узле, ограниченный против вращения с указанным узлом и расположенный при применении для сбора жидкости, как правило, из периферийно расположенного желоба или емкости, причем указанный качающийся элемент содержит качающийся контейнер, установленный эксцентрично относительно оси вращения указанного узла для заливки жидкости из указанного желоба или емкости, когда насос находится в состоянии покоя.

12. Абсорбционный тепловой насос, имеющий рабочую жидкость, содержащую абсорбент и летучий компонент, отличающийся тем, что он содержит средство для регулировки концентрации указанного абсорбента в указанной рабочей жидкости в соответствии, по меньшей мере, с одним из параметров: разностью температур между абсорбером и испарителем, тепловой нагрузкой на тепловой насос и одним или более других рабочих параметров.

13. Способ работы абсорбционного теплового насоса, содержащего вращательный узел, включающий в себя парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой с обеспечением циклического потока жидкости для летучего компонента и жидкого абсорбента для него, отличающийся тем, что он включает в себя регулировку концентраций жидкого абсорбента и летучего компонента, преобладающих в выбранной части или частях указанного теплового насоса, путем хранения, поддающегося изменению, количества жидкости в контейнере для заливки жидкости.

14. Абсорбционный центробежный тепловой насос, содержащий узел, включающий в себя парогенератор, конденсатор, испаритель и абсорбер, отличающийся тем, что одно или более из устройств, а именно конденсатор, испаритель и абсорбер содержит теплообменник, ограниченный спиралью трубы или имеющий гофрированную наружную поверхность.

Источник статьи: http://findpatent.ru/patent/216/2164325.html

Adblock
detector