Меню

Что такое антифрикционное покрытие поршня

Что такое антифрикционные покрытия и в чем их преимущество перед пластичными смазками?

Смотрите также

Для снижения трения в подвижных узлах любого оборудования требуется их своевременное смазывание. Выбор вида и способа смазки производится с учетом конструкции и условий эксплуатации пары трения.

Механизм действия традиционных жидких и пластичных смазочных материалов состоит в образовании разделительной смазочной пленки между движущимися поверхностями при определенном сочетании нагрузки и скорости, необходимом для установления гидродинамического или полужидкостного режима трения.

Однако реальные условия работы механизмов далеки от идеальных. Некоторые из механизмов (например, оборудование кирпичного производства) предназначены для постоянной эксплуатации в пыльной среде под воздействием высоких температур, нагрузок. Узлы большинства машин и оборудования в отдельные моменты времени или в течение всей эксплуатации также работают в режиме, при котором происходят локальные нарушения смазочной пленки, приводящие к повышенному трению, изнашиванию и образованию задиров. В таком режиме находятся не только тяжелонагруженные тихоходные узлы, но и все механизмы в моменты пуска, останова, реверсирования движения и в процессе приработки. Наиболее очевидным подтверждением этого факта является износ, который сопровождает работу всех машин.

В последние годы получил распространение новый вид смазочных материалов – антифрикционные покрытия . Они существенно снижают износ, значительно повышают надежность работы и ресурс узлов и механизмов.

Антифрикционные твердосмазочные покрытия (АТСП) – это смазочные материалы, подобные краскам, но содержащие вместо красящего пигмента высокодисперсные частицы твердых смазочных веществ, равномерно распределенных в смеси связующих веществ и растворителей.

Твердые сухие смазки обладают стабильным низким коэффициентом трения и обеспечивают хороший смазочный эффект.

В зависимости от того, какая несущая способность требуется от покрытия, в качестве сухих смазочных веществ применяют:

  • Для высоких нагрузок – дисульфид молибдена MoS2 и/или поляризованный графит
  • Для средних нагрузок – политетрафторэтилен (тефлон, PTFE, ПТФЭ) и/или другие полимеры

Связующие элементы обеспечивают адгезию к субстрату, химическую стойкость и защиту от коррозии. В качестве связующих используют эпоксидные смолы, титанаты, полиуретаны, акриловые, фенольные, полиамид-имидные и специальные компоненты.

При использовании органических связующих элементов термостойкость антифрикционных покрытий достигает +250 °С, а неорганические системы позволяют покрытиям работать при экстремально высоких температурах — вплоть до +600 °С.

Растворители предназначены для переноса и распределения твердых смазок и связующих на субстрате, а также для обеспечения нужной вязкости антифрикционного покрытия путем разбавления перед нанесением.

Для улучшения необходимых свойств, а также для модификации и придания антифрикционным покрытиям новых свойств в них добавляют присадки.

Антифрикционные покрытия наносятся на поверхность с помощью обычных технологий окрашивания, таких как распыление, трафаретная печать, окунание, нанесение кистью. После нанесения покрытия и сушки растворитель испаряется, а связующие вещества полимеризуются и обеспечивают надежное сцепление с основой. Выбор конкретного способа нанесения антифрикционных покрытий зависит от геометрии покрываемых деталей и желаемого результата с точки зрения равномерности и долговечности покрытий.

При нанесении покрытия на одну из деталей пары трения в процессе работы происходит частичный перенос твердых смазок на сопряженную поверхность. Таким образом, в процессе трения под нагрузкой формируются плотные и очень гладкие антифрикционные пленки, закрывающие неровности материала основы. В результате при работе пары трения скорость изнашивания покрытия сводится к минимуму.

Эти процессы иллюстрирует фотография, полученная с помощью сканирующего электронного микроскопа при увеличении 1000 раз. На левой части показано покрытие сразу после отверждения, а на правой – после приработки и формирования гладкой пленки из твердых смазок.

Преимущества антифрикционных покрытий перед другими видами смазочных материалов

Применение антифрикционных покрытий на сегодняшний день является самым перспективным способом решения многих проблем, связанных с потерями на трение в движущихся узлах.

В отличие от сухих смазок в виде натертых пленок частицы твердых веществ антифрикционных покрытий прочно удерживаются на поверхности с помощью связующего компонента.

По сравнению с применением традиционных смазочных материалов – пластичных и жидких смазок – антифрикционные покрытия имеют ряд преимуществ.

После нанесения антифрикционного покрытия образовавшаяся тонкая сухая смазочная пленка предотвращает налипание абразивной пыли и грязи на поверхность.

Благодаря тому, что твердые смазочные вещества удерживаются на поверхности связующими, антифрикционные покрытия в большинстве случаев обеспечивают смазку на весь срок службы. Сухие смазки в составе АТСП обладают исключительной термической стабильностью и химической инертностью, стойкостью к окислению и влаге. Они не стареют и не испаряются, способны эффективно работать в условиях радиации и вакуума даже после продолжительного простоя узла.

Читайте также:  Как вытащить поршень из цилиндра двигателя триммера

Толщина покрытия легко контролируется и может составлять от 5 до 20 мкм, что практически не влияет на исходную точность размеров детали. Возможно локальное нанесение антифрикционных покрытий на определенные участки поверхности. Обладая высокими противоизносными и антикоррозионными свойствами, АТСП могут заменить хромирование, цинкование и другие виды обработки.

Сравнение основных видов твердых смазок

Результаты испытаний антифрикционных покрытий MODENGY показали их способность снижать трение до минимальных значений (см. рисунок 1).

Рис. 1. Результаты испытаний АТСП на машине трения Falex LFW1 в соответствии с ASTM D2714

При применении покрытий на основе дисульфида молибдена коэффициент трения с ростом нагрузки снижается и стабилизируется на значении несколько сотых. Такое трение без применения антифрикционных покрытий возможно только в режиме жидкостной смазки, когда движущиеся поверхности полностью разделены слоем масла и не контактируют напрямую друг с другом.

Другие характеристики антифрикционных покрытий также значительно различаются в зависимости от имеющихся в составе сухих смазок.

Существенным недостатком графита, ограничивающим сферу его применения по сравнению с дисульфидом молибдена, является его недостаточная адгезия к металлическим поверхностям. Его молекулы неполярны и проявляют смазочные свойства лишь в присутствии влаги.

Этот недостаток можно устранить путем внедрения в слоистую структуру графита поляризующих агентов. Высокая адгезия поляризованного графита к металлическим поверхностям, наряду с термической стабильностью, делают его одним из наиболее перспективных инновационных смазочных материалов.

Поляризованный графит начала применять компания «Моденжи», создавшая уникальную линейку АТСП.

Типичные применения АТСП MODENGY

Линейка продуктов MODENGY включает антифрикционные покрытия на основе различных видов твердых смазок, в том числе дисульфида молибдена, графита, политетрафторэтилена (тефлона), а также специальных композиций.

Связующее вещество в составе покрытия определяет его защитные свойства, химическую стойкость, а также тип отверждения (температуру полимеризации).

Выбор конкретного материала производится с учетом конструкции узла трения, условий его работы и желаемого способа нанесения.

Антифрикционные покрытия MODENGY способны работать в широком температурном диапазоне, что позволяет предлагать решения для самых различных, в том числе экстремальных условий.

MODENGY 1005 на основе дисульфида молибдена характеризуется повышенной несущей способностью. Рабочие температуры: от -70 до +255 °С. Сферы применения:

  • Подшипники скольжения
  • Направляющие скольжения
  • Шлицевые и шпоночные соединения
  • Зубчатые передачи
  • Другие узлы с парами трения металл-металл

MODENGY 1014 на основе политерафторэтилена и дисульфида молибдена работает при температуре от -75 до +255 °С. Материал наносится на:

  • Подшипники скольжения
  • Направляющие скольжения
  • Шлицевые и шпоночные соединения
  • Зубчатые передачи
  • Другие узлы с парами трения металл-металл

MODENGY 1002 на основе дисульфида молибдена функционирует в широком диапазоне температур: от -210 до +320 °С. Рекомендуется для нанесения на:

  • Подшипники скольжения
  • Направляющие скольжения
  • Зубчатые передачи
  • Резьбовые соединения
  • Шлицевые и шпоночные соединения
  • Другие узлы с парами трения металл-металл

MODENGY 1008 на основе дисульфида молибдена и графита работает при температуре от -70 до +210 °С. Наносится на:

  • Подшипники скольжения
  • Направляющие скольжения
  • Зубчатые передачи
  • Резьбовые соединения
  • Шлицевые и шпоночные соединения
  • Другие узлы с парами трения металл-металл


MODENGY 1001 на основе дисульфида молибдена и графита выдерживает температуры от -180 до +440 °С. Наносится на:

  • Подшипники скольжения
  • Направляющие скольжения
  • Открытые зубчатые передачи
  • Закрытые зубчатые передачи
  • Цепные передачи
  • Шлицевые и шпоночные соединения
  • Резьбовые соединения
  • Гибкие валы в оболочках
  • Сопряжения с посадками с натягом
  • Регулировочные клинья
  • Электрические контакты
  • Ходовые винты
  • Тросы управления в оболочках
  • Другие узлы с парами трения металл-металл

MODENGY 1003 на основе дисульфида молибдена и графита функционирует при температуре от -70 до +245 °С. Наносится на:

  • Подшипники скольжения
  • Направляющие скольжения
  • Зубчатые передачи
  • Резьбовые соединения
  • Шлицевые и шпоночные соединения
  • Другие узлы с парами трения металл-металл

MODENGY 1010 на основе политетрафторэтилена работает при температуре от -70 до +250 °С. Наносится на:

  • Подшипники скольжения
  • Резьбовые соединения
  • Подвижные уплотнения
  • Другие узлы с парами трения металл-пластик, металл-резина
Читайте также:  В вертикальном теплоизолированном сосуде под поршнем массы м находится жидкость

MODENGY PTFE-A20 на основе политетрафторэтилена работает при температуре от -50 до +130 °С. Наносится на:

  • Уплотнительные устройства
  • Направляющие скольжения
  • Подшипники скольжения
  • Гибкие валы
  • Резьбовые соединения
  • Зубчатые передачи
  • Другие узлы с парами трения металл-пластик, пластик-пластик, кожа-пластик, кожа-металл, дерево-кожа, металл-резина, металл-металл

Дополняя пластичные смазки и масла, а часто полностью заменяя их, антифрикционные покрытия MODENGY надежно защищают от износа металлические и пластиковые поверхности в самых экстремальных условиях эксплуатации, часто используются в качестве аварийной смазки.

Производители автокомпонентов применяют антифрикционные покрытия MODENGY при массовом выпуске поршней, нанося их методом трафаретной печати.

Перед нанесением АТСП требуется тщательно очищать и обезжиривать поверхности — в целях лучшего сцепления покрытия с ними.

Качество и долговечность покрытий MODENGY гарантирует только их применение в комплексе со вспомогательными средствами для очищения и финишной подготовки поверхностей.

Для быстрой очистки и обезжиривания металлических деталей, рабочих поверхностей тормозных систем, цепных передач, фрикционных муфт, электрических контактов предназначен Очиститель металла MODENGY. Его многокомпонентная формула обеспечивает эффективное удаление загрязнений различной химической природы: нефтепродуктов, силиконовых масел, консервационных составов, адсорбированных пленок газов, влаги и др. Состав испаряется быстро и без остатка, не вызывает коррозии металлов.

В качестве финального шага перед нанесением АТСП специалисты настоятельно рекомендуют использовать Специальный очиститель — активатор MODENGY. Он обеспечивает дополнительное обезжиривание поверхностей и способствует высокой адгезии антифрикционного покрытия.

Пошаговую инструкцию по нанесению аэрозольного антифрикционного покрытия на примере MODENGY Для деталей ДВС смотрите ниже.

Источник статьи: http://atf.ru/articles/obzory/chto_takoe_antifriktsionnye_pokrytiya_i_v_chem_ikh_preimushchestvo_pered_plastichnymi_smazkami/

Виды покрытия для поршней двигателя, их преимущества и актуальность применения

Технологии автопроизводства развиваются стремительными темпами. Одной из главных задач разработчиков является обеспечение защиты элементов двигателя.

Для защиты таких компонентов как поршни предусмотрено использование специальных покрытий. Они бывают разного типа, в зависимости от используемых компонентов, и выполняют различные функции.

Автомобилисты закономерно интересуются, каким бывает покрытие поршней, для чего его используют и есть ли смысл в применении подобных решений.

Виды покрытия

Всего можно выделить 2 основных типа покрытия. Это молекулярные и керамические.

В первом случае привязка состава к поверхности происходит на молекулярном уровне. Во многом это напоминает металлизацию. Главным преимуществом называют способность к механическому отражению тепла. Молекулы высоких температур отталкиваются от защитного покрытия и почти его не нагревают.

Керамическое покрытие завоевало популярность за счёт превосходных изолирующих свойств. Материал способен поглощать тепло, делая это верхним слоем.

Как раз верхние слои поршней выступают как основные меры защиты. Они удерживают в себе тепло, не позволяют ему проникать глубже в структуру материала. Керамическая обработка способствует увеличению отдачи, то есть повышается мощность ДВС. Исследования наглядно показали, что прирост по мощности может составлять 4-8%.

Изолирующее покрытие, которое наносится на поршневые головки, снижает риски возникновения повреждений при детонации двигателя.

Современные термостойкие покрытия успешно реализуются на различных двигателях. В основном это форсированные моторы, силовые агрегаты гоночных машин и болидов.

Теперь стоит отдельно взглянуть на используемые в автомобильных двигателях покрытия для защиты и увеличения ресурса поршней.

Молекулярное покрытие

Как уже отмечалось ранее, молекулярное покрытие позволяет обеспечить связывание защитного слоя и поверхности поршня на молекулярном уровне. В итоге поверхность становится максимально твёрдой, отлично отражает тепло.

У каждого производителя свои запатентованные составы для создания молекулярного покрытия. Но в основном речь идёт об использовании нитрида титана. Его часто можно встретить на юбке поршня, поскольку такое покрытие даёт целый ряд эксплуатационных преимуществ.

Нет смысла углубляться в сам процесс покрытия. Обычному автомобилисту достаточно лишь знать некоторые свойства этого материала:

  • Плавление состава наступает только при температуре около 3200 градусов Цельсия. Это делает покрытие максимально термоустойчивым. Тем самым слой длительное время удерживается на внутренних поверхностях.
  • Нитрид титана также характеризуется повышенной термодинамической устойчивостью. Это крайне полезное свойство, поскольку за счёт него обеспечивается высокий уровень защиты при детонации двигателя.
  • Высокий уровень твёрдости. Это свойство передаётся на поршень, он служит дольше, надёжнее и не теряет свои эксплуатационные характеристики.

Учитывая всё выше сказанное, нитрид титана действительно эффективен и полезен в качестве протекторного покрытия для поршней двигателя.

Читайте также:  Поршень массой 100 кг площадью 100 см движется вверх

Керамическое покрытие

Керамика уже обладает несколько иными свойствами. Это изолирующий материал. То есть керамика может поглощать тепло в слоях, которые находятся возле поверхности.

Используя керамический слой на поршне, создаётся высокоэффективный изолятор. Он удерживает на себе тепло и не позволяет ему проникать вглубь материала. За счёт тепла внутри двигателя применяемое покрытие из керамики для поршней способствует увеличению внутреннего давления. Это ведёт к созданию дополнительного усилия на поршни, и в итоге наблюдается прирост мощности.

Эксперты проводили испытания, тестируя гоночные силовые агрегаты. В среднем на них отмечался прирост по мощности в пределах от 4 до 8%.

Применение молибдена

Как и в случае с использованием титанового покрытия, молибденовые составы обеспечивают защиту от сильного перегрева. Материал способен снизить сопротивление стенок блока цилиндров. В итоге на стенках не образуются царапины и задиры.

Автовладелец при желании или необходимости может самостоятельно обработать детали ДВС с помощью молибденового протекторного состава.

Есть в продаже продукция, разового применения которой хватает для езды в течение нескольких лет или до пробега в 50 тысяч километров. У производителя предусмотрена чёткая инструкция, которую важно строго соблюдать.

Антифрикционные покрытия

Использование антифрикционных покрытий для поршней актуально для достаточно серьёзного тюнинга двигателя.

Антифрикционные составы не защищают от термической нагрузки, а используются как смазка длительного действия для элементов цилиндропоршневой группы.

В основном встречаются антифрикционные составы на основе графита или тефлона.

Про тефлоновый слой мнение совершенно разное в обществе автолюбителей. Многие сравнивают тефлоновое покрытие для деталей двигателя и тефлон, который наносится на сковороды. В действительности здесь есть своя логика. Тефлон не обладает высоким уровнем стойкости к повышенным температурам. А двигатель работает только в таких условиях.

Применение тефлона является скорее временным. Материал имеет отличные антифрикционные свойства. Актуально использовать на новых моторах в период притирки. Обычно слой тефлона наносится ещё с завода автопроизводителем. Поскольку материал отличается повышенным скользящим эффектом, это позволяет деталям двигателя лучше и быстрее приработаться. Затем слой тефлона попросту сгорает, не нанося никакого вреда внутренним компонентам ДВС.

Графитовое напыление выполняет аналогичные функции. То есть это состав для применения на ранних этапах тюнинга. Устанавливая новые компоненты мотора, либо полностью меняя двигатель, внутренние поверхности обрабатывают графитовыми составами. Они ускоряют приработку поршней и стенок цилиндров. В итоге элементы лучше скользят, не появляются задиры, царапины. Правильная приработка деталей играет огромную роль в создании оптимальной работы силового агрегата.

В чём преимущества

Спорить с эффективностью поршней, покрытых специальными составами, бессмысленно. Это давно доказано и подтверждено фактами.

Применяя подобные решения, можно добиться следующих преимуществ:

  • улучшается взаимная работа трущихся поверхностей;
  • ускоряется притирка и приработка поршня и цилиндра;
  • обеспечивается защита от высокотемпературных перегрузок;
  • снижается уровень вреда поршню при детонации двигателя;
  • создаётся защитный слой, способный справиться с длительной высокотемпературной нагрузкой.

Добиться таких преимуществ можно, использовав подходящий вариант покрытия поршней. Наносятся они своими руками либо с помощью специалистов.

Стоит ли использовать

Это главный вопрос, на который каждый автомобилист должен ответить сам.

Польза и эффективность специального покрытия находится вне всякого сомнения. Но проблема в том, что нанесение такого слоя процедура достаточно дорогая и сложная, требующая демонтажа мотора и его разборки.

В настоящее время покрытие поршней получило наиболее широкое распространение в гоночных автомобилях, на спортивных машинах и на авто, которые являются серьёзным тюнинг-проектом с прицелом на максимальное увеличение мощности. Чтобы справиться с такими нагрузками, поршню нужна дополнительная защита. И протекторные покрытия с этим прекрасно справляются.

Что же касается гражданского транспорта, то здесь потребности в подобных мерах нет. Для начала учтите, что автопроизводители на этапе сборки уже вносят специальное покрытие, необходимое для эффективной приработки деталей. Наносить его повторно уже не имеет смысла. А доработка путём обработки нитридом титана или керамикой крайне дорогая и технически сложная. Обычные автомобили не работают при таких нагрузках, чтобы нуждаться в подобной защите.

Источник статьи: http://drivertip.ru/osnovy/raznovidnosti-pokrytiya-porshney-dvigatelya.html

Adblock
detector