Меню

Что такое поршень в физике 8 класс

§ 22. Двигатель внутреннего сгорания

Двигатель внутреннего сгорания — очень распространённый вид теплового двигателя. Топливо в нём сгорает прямо в цилиндре, внутри самого двигателя. Отсюда и происходит название этого двигателя.

Двигатели внутреннего сгорания работают на жидком топливе (бензин, керосин, нефть) или на горючем газе.

Тепловые двигатели такого типа обычно устанавливают на автомобили.

На рисунке 26 показан простейший двигатель внутреннего сгорания в разрезе.

Рис. 26. Двигатель внутреннего сгорания в разрезе

Двигатель состоит из цилиндра, в котором перемещается поршень 3, соединённый при помощи шатуна 4 с коленчатым валом 5.

В верхней части цилиндра имеется два клапана 1 и 2, которые при работе двигателя автоматически открываются и закрываются в нужные моменты. Через клапан 1 в цилиндр поступает горючая смесь, которая воспламеняется с помощью свечи 6, а через клапан 2 выпускаются отработавшие газы.

В цилиндре такого двигателя периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха. Температура газообразных продуктов сгорания достигает 1600—1800 °С. Давление на поршень при этом резко возрастает.

Расширяясь, газы толкают поршень, а вместе с ним и коленчатый вал, совершая механическую работу. При этом они охлаждаются, так как часть внутренней энергии газов превращается в механическую энергию.

Рассмотрим более подробно схему работы такого двигателя. Крайние положения поршня в цилиндре называют мёртвыми точками. Расстояние, проходимое поршнем от одной мёртвой точки до другой, называют ходом поршня.

Один рабочий цикл в двигателе происходит за четыре хода поршня, или, как говорят, за четыре такта. Поэтому такие двигатели называют четырёхтактными.

Один ход поршня, или один такт двигателя, совершается за пол-оборота коленчатого вала.

Рис. 27. Циклы работы двигателя внутреннего сгорания

При повороте вала двигателя в начале первого такта поршень движется вниз (рис. 27, а). Объём над поршнем увеличивается. Вследствие этого в цилиндре создаётся разрежение. В это время открывается клапан 2 и в цилиндр входит горючая смесь. К концу первого такта цилиндр заполняется горючей смесью, а клапан 1 закрывается.

При дальнейшем повороте вала поршень движется вверх (второй такт) и сжимает горючую смесь (рис. 27, б). В конце второго такта, когда поршень дойдёт до крайнего верхнего положения, сжатая горючая смесь воспламеняется (от электрической искры) и быстро сгорает.

Двигатель внутреннего сгорания:
а — мотоцикла; б — автомобиля; в — самолета

Образующиеся при сгорании газы давят на поршень и толкают его вниз (рис. 27, в). Под действием расширяющихся нагретых газов (третий такт) двигатель совершает работу, поэтому этот такт называют рабочим ходом. Движение поршня передаётся шатуну, а через него коленчатому валу с маховиком. Получив сильный толчок, маховик продолжает вращаться по инерции и перемещает скреплённый с ним поршень при последующих тактах. Второй и третий такты происходят при закрытых клапанах.

Дизель Рудольф (1858—1913)
Немецкий инженер, создатель двигателя внутреннего сгорания используемого по настоящее время.

В конце третьего такта открывается клапан 2, и через него продукты сгорания выходят из цилиндра в атмосферу. Выпуск продуктов сгорания продолжается и в течение четвёртого такта, когда поршень движется вверх (рис. 27, г). В конце четвёртого такта клапан 2 закрывается.

Итак, цикл двигателя состоит из следующих четырёх процессов (тактов): впуска, сжатия, рабочего хода, выпуска.

В автомобилях используют чаще всего четырёхцилиндровые двигатели внутреннего сгорания. Работа цилиндров согласуется так, что в каждом из них поочерёдно происходит рабочий ход и коленчатый вал всё время получает энергию от одного из поршней. Имеются и восьмицилиндровые двигатели. Многоцилиндровые двигатели в лучшей степени обеспечивают равномерность вращения вала и имеют большую мощность.

Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолёты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Читайте также:  Space engineers лифт из поршней

Источник статьи: http://tepka.ru/fizika_8/22.html

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания был изобретен в 1860 г. французским механиком Э. Ленуаром. Свое название он получил из-за того, что топливо в нем сжигалось не снаружи, а внутри цилиндра двигателя. Аппарат Ленуара имел несовершенную конструкцию, низкий КПД (около 3 %) и через несколько лет был вытеснен более совершенными двигателями.

Наибольшее распространение среди них получил четырехтактный двигатель внутреннего сгорания, сконструированный в 1878 г. немецким изобретателем Н. Отто. Каждый рабочий цикл этого двигателя включал в себя четыре такта: впуск горючей смеси, ее сжатие, рабочий ход и выпуск продуктов сгорания. Отсюда и название двигателя — четырехтактный.

Двигатели Ленуара и Отто работали на смеси воздуха со светильным газом. Бензиновый двигатель внутреннего сгорания был создан в 1885 г. немецким изобретателем Г. Даймлером. Примерно в это же время бензиновый двигатель был разработан и О. С. Костовичем в России. Горючая смесь (смесь бензина с воздухом) приготовлялась в этом двигателе с помощью специального устройства, называемого карбюратором.


Современный четырехцилиндровый двигатель внутреннего сгорания изображен на рисунке 88. Поршни, находящиеся внутри цилиндров двигателя, соединены с коленчатым валом 1. На этом валу укреплен тяжелый маховик 2. В верхней части каждого цилиндра имеется два клапана: один из них называется впускным, другой — выпускным. Через первый из них горючая смесь попадает в цилиндр, а через второй продукты сгорания топлива уходят наружу.

Принцип действия одноцилиндрового двигателя внутреннего сгорания иллюстрирует рисунок 89.

1-й такт — впуск. Открывается клапан 1. Клапан 2 закрыт. Движущийся вниз поршень 3 засасывает в цилиндр горючую смесь.
2-й такт — сжатие. Оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь. Смесь при сжатии нагревается.
3-й такт — рабочий ход. Оба клапана закрыты. Когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи 4. В результате сгорания смеси образуются раскаленные газы, давление которых составляет 3—6 МПа, а температура достигает 1600—2200 °С. Сила давления этих газов толкает поршень вниз. Движение поршня передается коленчатому валу с маховиком. Получив сильный толчок, маховик будет вращаться дальше по инерции, обеспечивая тем самым перемещение поршня и при последующих тактах.
4-й такт — выпуск. Открывается клапан 2. Клапан 1 закрыт. Поршень движется вверх. Продукты сгорания топлива уходят из цилиндра и через глушитель (на рисунке не показан) выбрасываются в атмосферу.

Мы видим, что в одноцилиндровом двигателе полезная работа совершается лишь во время третьего такта. В четырехцилиндровом двигателе (см. рис. 88) поршни укреплены таким образом, что во время каждого из четырех тактов один из них находится в стадии рабочего хода. Благодаря этому коленчатый вал получает энергию в 4 раза чаще. При этом увеличивается мощность двигателя и в лучшей степени обеспечивается равномерность вращения вала.

Частота вращения вала у большинства двигателей внутреннего сгорания лежит в пределах от 3000 до 7000 оборотов в минуту, а в некоторых случаях достигает 15 000 оборотов в минуту и более.

В 1897 г. немецкий инженер Р. Дизель сконструировал двигатель внутреннего сгорания, в котором сжималась не горючая смесь, а воздух. В процессе этого сжатия температура воздуха поднималась настолько, что при попадании в него топлива оно самовозгоралось. Специального устройства для воспламенения топлива в этом двигателе уже не требовалось; не нужен был и карбюратор. Новые двигатели стали называть дизелями.

Двигатели Дизеля являются наиболее экономичными тепловыми двигателями: они работают на дешевых видах топлива и имеют КПД 31—44 % (в то время как КПД карбюраторных двигателей составляет обычно 25-30 %). В настоящее время они применяются на тракторах, тепловозах, теплоходах, танках, грузовиках, передвижных электростанциях.

Читайте также:  Смазка для поршней дисковых тормозов

Судьба самого изобретателя нового двигателя оказалась трагической. 29 сентября 1913 г. он сел на пароход, отправлявшийся в Лондон. Наутро его в каюте не нашли. Талантливый инженер бесследно исчез. Считается, что он покончил с собой, бросившись ночью в воды Ла-Манша.

Изобретение двигателя внутреннего сгорания сыграло огромную роль в автомобилестроении. Первый автомобиль с бензиновым двигателем внутреннего сгорания был создан в 1886 г. Г. Даймлером. Одновременно с этим Даймлер запатентовал установку своего двигателя на моторной лодке и мотоцикле. В том же году, но чуть позже появился трехколесный автомобиль К- Бенца. Громоздкие и трудноуправляемые паровые автомобили стали вытесняться новыми машинами. Последующие годы явились началом промышленного производства автомобилей.
В 1892 г. свой первый автомобиль построил Г. Форд (США). Через 11 лет его автомобили (рис. 90) были запущены в массовое производство.

В 1908 г. автомобили начали производить на Русско-Балтийском заводе в Риге. Один из первых русских автомобилей «Руссо-Балт» показан на рисунке 91.

Важную роль в развитии и распространении нового вида транспорта сыграли автомобильные гонки, которые стали устраиваться с 1894 г. В первой из них средняя скорость автомобилей составляла лишь 24 км/ч. Однако уже через пять лет она достигла 70 км/ч, а еще через пять лет— 100 км/ч.

После 1900 г. началось производство специальных гоночных автомобилей. С каждым годом их скорость возрастала. В 60-х гг. скорость автомобилей с поршневым двигателем превысила 600 км/ч, а после установки на автомобиле газотурбинного двигателя она перевалила за 900 км/ч. Наконец, в 1997 г. Э. Грин (Великобритания) на своем ракетном автомобиле «Траст SSC» достиг скорости 1227,985 км/ч, что превысило скорость звука в воздухе!

1. Опишите принцип действия четырехтактного двигателя внутреннего сгорания. Из каких тактов состоит каждый его рабочий цикл? 2. Какую роль в двигателе играет маховик? 3. Чем отличается дизельный двигатель внутреннего сгорания от карбюраторного? 4. Кто создал первые автомобили с двигателем внутреннего сгорания?

Источник статьи: http://phscs.ru/physics8/internal-combustion-engine

Поршень

По́ршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. В поршневом механизме, в отличие от плунжерного, уплотнение располагается на цилиндрической поверхности поршня, обычно в виде одного или нескольких поршневых колец.

Содержание

Строение

Поршень подразделяется на три части, выполняющие различные функции

  • днище
  • уплотняющая часть
  • направляющая часть (юбка)

Для передачи усилия от поршня (или наоборот) может использоваться шток, либо кривошип, который соединяется с поршнем с помощью пальца. Другие способы передачи усилия используются реже. В некоторых случаях шток может играть роль направляющего устройства, в этом случае юбка не нужна.

Поршень может быть односторонним или двухсторонним. В последнем случае поршень имеет два днища.

Днище

Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания. В некоторых двухтактных двигателях днище поршня выполняется в виде выступа-отражателя для направленного движения продуктов сгорания при продувке. Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

Читайте также:  Пружины поршня для ружей

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива. При выгорании масла наблюдается повышенная дымность отработавших газов и двигатели снимаются с эксплуатации вне зависимости от удовлетворительности мощностных и других его показателей. [1]

Уплотняющая часть

Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца. В некоторых конструкциях поршней из алюминиевых сплавов в его головку залит ободок из коррозионностойкого чугуна (нирезиста), в котором прорезана канавка для верхнего наиболее нагруженного компрессионного кольца. Нирезистовую вставку под верхнее поршневое кольцо имеют, в частности, поршни двигателей, выпускаемых ТМЗ (Тутаевский моторный завод). Благодаря этому значительно увеличивается износостойкость поршня. Кольцевые каналы для маслосъемных колец выполняются со сквозными отверстиями, через которые масло, снятое с зеркала цилиндра, поступает внутрь поршня и стекает в поддон картера двигателя.

Направляющая часть

Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Так как масса поршня у приливов оказывается большей, чем в других частях юбки, температурные деформации при нагреве в плоскости бобышек также будут наибольшими. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.

Материалы

К материалам, применяемым для изготовления поршней автотракторных двигателей, предъявляются следующие требования:

  • высокая механическая прочность;
  • малая плотность;
  • хорошая теплопроводность;
  • малый коэффициент линейного расширения;
  • высокая коррозионная стойкость;
  • хорошие антифрикционные свойства.

Для изготовления поршней применяются серые чугуны и алюминиевые сплавы.

Чугун

Алюминий

Подавляющее большинство современных автомобильных двигателей имеют алюминиевые поршни.

Достоинства алюминиевых поршней:

  • малая масса (как минимум на 30 % меньше по сравнению с чугунными);
  • высокая теплопроводность (в 3-4 раза выше теплопроводности чугуна), обеспечивающая нагрев днища поршня не более 250 °C, что способствует лучшему наполнению цилиндров и позволяет повысить степень сжатия в бензиновых двигателях;
  • хорошие антифрикционные свойства.

Недостатки

Недостатками алюминиевых поршней являются:

  • большой коэффициент линейного расширения (примерно в 2 раза больше, чем у чугуна),
  • значительное снижение механической прочности при нагреве (повышение температуры до 300 °C приводит к снижению механической прочности алюминия на 50-55 % против 10 % у чугуна).

Недопустимые для нормальной работы двигателя зазоры между стенками цилиндров и алюминиевыми поршнями устраняются конструктивными мероприятиями, основными из которых являются:

  • придание юбке поршня овальной или овально-конусной формы;
  • изоляция тронковой (направляющей) части поршня от наиболее нагретой его части (головки);
  • косой разрез юбки по всей длине, обеспечивающий пружинящие свойства стенок;
  • Т- и П-образные прорези в юбке поршня не на полную её длину в сочетании с её овальностью;
  • компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна.

Применение

Две основные проблемы, решаемые при проектировании моторов:

  1. как избежать повышенного износа поршня,
  2. как избежать прогара поршня.

Обе эти проблемы возникают вследствие желания конструкторов максимально облегчить поршень, поскольку это позволяет улучшить показатели моторов и компрессоров.

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/88314

Adblock
detector