Меню

Что такое сток поршня

Техно теория – собираем мощный мотор, выбираем поршневую

Поршень — одна из деталей, скрытых в недрах силового агрегата, благодаря изменению конфигурации которых можно повысить как отдачу, так и ходи мость мотора. Конструктивные нюансы поршней, реализуемых на вторичном рынке, помогают решить эти задачи.

Автор: Алексей Романов, фото из разных источников

История развития поршня

За более чем 140-летнюю историю развития двигателей внутреннего сгорания основные функции и конструктивные основы поршней не изменились. Эта цилиндрическая деталь формирует нижнюю половину камеры сгорания и передает энергию, расширяющихся в цилиндре газов через поршневой палец и шатун к коленчатому валу. Для предотвращения прорыва газов в картер и масла в камеру сгорания, как и на поршнях самых первых моторов, установлены кольца. Условия же работы стали другими — возросли и нагрузки, и температуры.

В тоже самое время, двигатели работают чище, а ходимость их гораздо выше, чем раньше. Именно с этим в первую очередь связаны основные изменения конструкции, применении новых сплавов поршней и колец, широкое использование специальных покрытий. Поршни становятся короче и легче. Частично снижение веса было достигнуто уменьшением как общей высоты поршней, так и укорачиванием отдельных элементов.

Информация – кольца поршневой

За последние 30 лет типичная высота юбок сократилась с 60-65 мм до 35-40 мм. Такое облегчение потребовало уменьшения до 0.025-0.125 мм зазора между и стенками цилиндра поршнем, дабы убавить его раскачивание во время движения.

В спортивных моторах, где юбка практически отсутствует вовсе, возможен и нулевой зазор или даже небольшой натяг, если поршни имеют специальные антифрикционные покрытия. Расстояние от центра поршневого пальца до вершины днища поршня, называемое компрессионной высотой, за те же последние три десятилетия сократилось с 38-44 мм до 30-33 мм.

Форма поверхности днища поршней также менялась. Плоскости уступили место вогнутым, более сложным конфигурациям, обеспечивающим циркуляцию топливовоздушной смеси и улучшающим отвод отработавших газов. Самое критическое место на поршне в области верхнего компрессионного кольца. Еще десятилетие назад, высота жарового пояса (расстояния между верхним компрессионным кольцом и кромкой днища) обычно составляла 7.5 — 8.0 мм. Сегодня оно уменьшилось до 3.0-3,5 мм в большинстве двигателей.

Информация поршень

Передвижение компрессионного кольца ближе к вершине поршня во многом вызвано борьбой за полноту сгорания смеси и, как следствие, за уменьшение вредных выбросов. Дело в том, что щелевое пространство между жаровым поясом и стенкой цилиндра создает мертвую зону для распространения пламени топливовоздушной смеси, и там остается не сожженное топливо. Само по себе это количество мало, но если умножить его на четверть частоты вращения коленвала и на количество цилиндров, то становится понятно, что углеводороды, спрятавшиеся в этом месте, заметно повышают уровень СН в выхлопе двигателя.

Информация — гоночные поршни

Вследствие уменьшения жарового пояса компрессионное кольцо переместилось в зону высоких рабочих температур, которые делают металл более мягким, что увеличивает опасность деформирования кольцевой канавки, приваривания кольца к посадочному месту или поломки, как кольца, так и кольцевых перемычек. Это потребовало применения более стойких материалов, анодирования канавки кольца. Таким образом, конструкторский поиск усовершенствований поршней сосредоточен на геометрических нюансах, материалах, весе, зависящем напрямую от первых двух характеристик и применении специальных покрытий. Те же аспекты, но уже в готовом виде, принимают во внимание при выборе поршней, дорабатывая мотор.

Выбор поршневой при тюнинге — Геометрия

В первую очередь подбор поршневой при тюнинге, как и при капитальном ремонте силового агрегата основан на геометрических зависимостях его недр — диаметра цилиндра, хода поршня. размера коленчатого вала, длины шатунов, рекомендуемых тепловых зазоров, параметров головки блока цилиндров (ее высота, конструкция камеры сгорания, размеры и расположение клапанов). Для низкобюджетных проектов выбор стоковой поршневой будет достаточен. При Серьезной же форсировке силового агрегата, стоит обратить внимание на тюнинговую линейку изделий или кастом-продукцию, конструкторские решения которых нацелены на конкретные требования специфической эксплуатации двигателя. Производители предлагают на вторичном рынке поршни с конфигурациями днища, которые увеличивают скорость горения смеси, что позволяет увеличивать степень сжатия без опасности детонации. Часто специальные углубления используется не только для размещения тарелок клапанов, но и для устранения критических горячих точек в камере сгорания, для увеличения циркуляции потока смеси и лучшего удаления выхлопных газов.

Нюансы выбора поршней

Другой уникальный конструктивный элемент, встречающийся у поршней, предназначенных для тюнинговых моторов, заключается в мини-оребрении площади жарового пояса и на перемычке первого и второго колец. Если поршень становится слишком горячим, то вершина выпуклостей такого оребрения, контактируют со стенкой цилиндра. Этот мгновенный контакт помогает охладить поршень, чтобы уменьшить опасность детонации и разрушения поршня.

Некоторые поршни, предлагаемые на вторичном рынке, делаются с пальцами, которые немного смещены вверх по сравнению со стоковыми образцами, чтобы компенсировать шлифовку привалочных плоскостей ГБЦ и блока цилиндров. Применение таких изделий лучшая альтернатива спиливанию вершины поршня, если блок привалочные плоскости подвергались обработке, поскольку уменьшенная глубина выемок под клапана увеличивает риск повреждения последних. Перемещение местоположения пальца выше на поршне также позволяет применять в моторе более длинные шатуны, что приводит к увеличению крутящего момента и делают жизнь подшипников и колец легче.

Нюансы поршневой

Постройка нескольких моторов даст опыт в определения необходимой высоты юбки, ориентируясь на максимальную мощность и потолок рабочих оборотов, а по диапазону рабочих температур, толщину прокладки ГБЦ и степени сжатия — прочность конструкции поршней. Чем ближе к вершине поршня находятся кольца, тем больше создается давление в цилиндре и тем выше крутящий момент и мощность мотора. Но при этом работа колец перемещается в зону с более высокой температурой, что вынуждает делать большие кольцевые промежутками и сами кольца толще. Выбор подобной схемы для изготовления поршня может также вызвать проблемы с возможностью организации правильного рельефа днища.

Высоты над кольцом может не хватить для выемок под клапана. Надежности обычных чугунных компрессионных колец при жаровом поясе в 7.5-8 мм хватило бы с запасом, но при уменьшении его до 2.5-3 мм такие кольца не справляются со своей задачей. Поэтому в современных моторах применяют кольца из специальных марок гибкого чугуна или из стали. Тенденция уменьшения толщины компрессионного кольца наметилось еще в 80-х годах. Типичная толщина сегодняшних компрессионных колец составляет 1.2 мм: 1,5 мм для второго кольца и 3.0 мм для маслосъемного.

Встречаются и более тонкие — компрессионные толщиной 1,0 мм и 2 миллиметровые маслосъемные. Примерно 40% от потерь на трение в двигателе приходится на работу колец, увеличение упругости их уменьшает сопротивление трения в цилиндре при ходе поршня. Поэтому более узкие и тонкие кольца стали применяться изготовителями в стандартных моторах. Это значительно повлияло на экономию топлива, температурный режим и ходимость силовых агрегатов, поскольку кроме снижения потерь на трение уменьшились и ударные нагрузки, передаваемые на поршень и стенки цилиндра. Но, с другой стороны, тонкие кольца хуже отводят тепло от поршня в стенку цилиндра из-за меньшей площади контакта с обоими. Следовательно, поршни с такими кольцами будут более горячими, чем поршни с большими кольцами. Изготовители колец дают рекомендации по этому вопросу на основании многочисленных испытаний, когда после определенного пробег а мотор разбирается и проверяется его состояние.

Читайте также:  Поршень ланос размеры поршней

Материалы и вес поршней

Сплав, из которого поршень сделан, не только определяет его прочность и характеристики износостойкость, но также и особенности теплового расширения. В поршнях, предлагаемых на вторичном рынке для тюнинга, обычно используются сплавы с высоким содержанием кремния. Большинство поршней раньше делались из доэвтектических алюминиевых сплавов.

ЧЕМ ВЫШЕ ФОРСИРОВКА ДВИГАТЕЛЯ, ТЕМ ВЫШЕ НЕОБХОДИМОСТЬ ПОКРЫТИЙ НА ПОРШНЯХ

которые содержали от 8.5 до 10.5 % кремния. Сегодня мы видим больше эвтектических сплавов, у которых содержание кремния составляет 11% и заэвтектические сплавы, у которых кремния от 12.5 до более чем 16%. Кремний улучшает прочностную стойкость материала при высокой температуре и уменьшает коэффициент его расширения, таким образом, тепловые зазоры между поршнем и стенками цилиндров могут быть меньше. У заэвтектических поршней коэффициент теплового расширения приблизительно на 15 % меньше чем у стандартных поршней. Следовательно, выбирая такой поршень, нужно скорректировать указанный производителем зазор. Заэвтектические сплавы также несколько легче (приблизительно на 2%), чем материалы, применяемые в стандартных моторах. Но отливки часто делаются более тонкими, потому что сплав прочнее, что приводит в итоге к сокращению общей массы поршня до 10%.

Заэвгектические сплавы труднее отливать. потому что кремний сложно сохранить равномерно рассеянным по объему алюминия пока металл охлаждается. Размер частиц должен также тщательно контролироваться, чтобы поршень не становился ломким или с крупными твердыми включениями, мешающими механической обработке. Некоторые поршни проходят специальную термообработку, улучшающую структуру зерна для повышения прочности и износостойкости.

Информация – износ поршневой

После такой термообработки эти показатели могут увеличиваться до 30%. Механическая обработка поршней из заэвтектическик сплавов из-за их твердости труднее, потому и стоимость их, как правило, несколько выше стандартных. Для конвейера подобный материал дороговат. Выбор веса поршней и материала, из которого они изготовлены, во многом (хотя и не полностью) обусловливается необходимой прочностью деталей для нагрузок в строящемся силовом агрегате. Ходимость — основной критерий, если, конечно, машину не планируется создавать заново перед каждой гонкой.

Вес применяемых поршней может быть уменьшен несколькими путями. Один из них — врезать в блок цилиндров масляные форсунки. Распыляемое ими масло охлаждает поршни, что позволяет сэкономить вес, используя конструкцию с более тонкими стенками днища. Другой способ — применение поршней с короткими юбками, предназначенных для высоко оборотистых моторов, также снизит вес, более легкие поршни облегчат раскрутку мотора, но при этом стоит быть крайне осторожным в выборе.

Покрытия поршней

Необходимость покрытий зависит от того, насколько экстремальны эксплуатационные режимы. Чем выше форсировка двигателя, тем необходимость эта выше. Потери на трение могут составлять более лошадиной силы, вызывают чрезмерный износ и повышают температуру деталей мотора. Особенно ощутим нагрев на юбке поршня и в отверстии поршневого пальца. Покрытия, предотвращающие износ, удлиняют жизнь поршня. Сегодня, во многих серийных моторах применяют поршни с графито-дисульфидно-молибденовым покрытием на юбке поршня, уменьшающим сопротивление трения, большинство изготовителей поршней на вторичном рынке также предлагают некоторый тип покрытых поршней, предназначенных в качестве замены стоковых изделий при ремонте и тюнинге.

Но не только с трением призваны бороться покрытия на изделиях. В процессе работы мотора желательно чтобы высокая температура в камере сгорания как можно меньше передавалась поршню. Горячий раскаленный поршень –источник для самовоспламенения смеси и детонации. Кроме того, высокая температура меняет твердость материала, что снижает ходимость поршней не только из-за повышенного износа, но и может вызвать их разрушение из-за теплового коробления. Керамико-металлические покрытия короны поршня — тип покрытий, работающих как тепловой барьер. Удержание высокой температуры в камере сгорания повышает тепловую эффективность и дает больше мощности. Это также помогает поршню не нагреваться сверх меры. Правда, слишком большая температура в камере сгорания также увеличивает риск детонации и самовоспламенения. Когда поршни с подобными покрытиями установлены на моторах, угол опережения зажигания обычно уменьшают на несколько градусов.

Конструкция поршня

Образование нагарных отложений на нижней поверхности днища поршня, утяжеляющих его, совсем нежелательно. Особенно активен процесс образования таких излишеств при устройстве масляных форсунок охлаждеиия. Специальные поршневые покрытия могут уменьшить время, которое масло проводит на основании поршня, а значит и возможность создания масляной «кулинарии». Анодирование компрессионной кольцевой канавки, как способ борьбы с привариванием кольца к материалу поршня под действием высокой температуры, используется во многих серийных моделях современных двигателей. Но это покрытие, толщиной около 20 микрон не всесильно, анодированный поршень может потерпеть неудачу, раскалившись сверх меры. Некоторые производители не серийной продукции вместо анодирования применяют вставки из никелевых сплавов в кольцевой канавке. Необходимость конструктивных особенностей крайне трудно просчитать, основываясь только на цифрах. Поэтому при выборе поршней лучше обратиться к тем, кто может дать совет на основании опыта эксплуатации. И уже по списку. составленному мастером. определится с предпочтениями.

Источник статьи: http://mag-option.ru/tehno-teoriya-sobiraem-moshhnyj-motor-vybiraem-porshnevuyu/

[Статья] Анатомия Поршня — Базовые технические данные

Модификация и свап двигателя Обсуждение увеличения мощности двигателя и его свап: поршни, шатуны, валы, впуск, выхлопные системы и пр.

Фото 1/23 / Анатомия поршня

Если вы – такой же, как и мы, то у вас не уходит слишком много времени на размышления, какие именно поршни установлены на вашем двигателе. Чаще всего необходимость в этом отсутствует, но однажды поршень сгорает, изнашивается или просто ломается и тогда его необходимо заменить или внести в его конструкцию изменения. Если вы не занимаетесь модификацией двигателя, скорее всего ваш выбор падет на стандартный комплект кованых алюминиевых поршней. Но какой сплав лучше всего выбрать? И будете ли вы покупать поршни, разработанные в соответствии с новейшими технологиями? В этой статье мы расскажем о некоторых факторах, которые помогут вам выбрать поршень именно для вашего двигателя.

Фото 2/23 / Анатомия поршня — Базовые технические данные

Сравнительный анализ алюминиевого поршня 2618 и 4032:

Не важно, какой тип или марку поршня вы решите использовать, все они выполняются из алюминиево-кремниевого сплава. Почти все кованые поршни вторичного рынка выполнены из алюминиевого сплава 4032 или 2618, где кремний применяется в том количестве, который определяет общий уровень прочности и сопротивления износу.

Читайте также:  Поршня для двигателя f3r

Фото 3/23 / Анатомия поршня — Базовые технические данные

Алюминиевый сплав 2618 имеет более высокую степень прочности и, в конечном счете, слегка уступает сплаву 4032. Поршень из сплава 2618 является идеальным выбором для двигателей с наддувом, которые отличаются более высокой температурой эксплуатации и/или предназначены для гоночных автомобилей. По сравнению с моделью 4032, этот поршень из низко-кремнистого сплава требует более широкого зазора между юбкой поршня и цилиндром из-за более высокого коэффициента теплового расширения, в результате которого при нагревании поршень увеличивается в диаметре.

Плюсы

  • Усталостная долговечность
  • Жаропрочность
  • Удельная проводимость (передача тепла)
  • Высокая прочность

Минусы

  • Высокий коэффициент расширения (требуется более широкий зазор)
  • Низкий коэффициент износа (из-за низкого содержания кремния)
  • Высокий уровень шума при работе или стук в двигателе из-за большого зазора между юбкой цилиндра поршня и цилиндром

Алюминиевый сплав 4032

Алюминиевый сплав 4032 предназначен для работы в условиях высоких нагрузок, когда в первую очередь требуется прочность и низкий уровень шума. Поршень, выполненный из сплава 4032, требует меньшего зазора между юбкой поршня и цилиндром за счет высокого уровня содержания кремния в составе и является идеальным решением для автомобилей, предназначенных для повседневной эксплуатации.

Плюсы

  • Высокий коэффициент износа (высокий уровень сопротивления износу за счет высокого уровня содержания кремния в составе сплава)
  • Низкий коэффициент расширения (требуется небольшой зазор)
  • Низкая плотность (легкий вес)

Минусы

  • Ограниченное сопротивление высоким температурам (чем выше температура, тем ниже прочность)
  • Чувствительность к внешнему воздействию (не прочный)

Отверстия для сброса давления

Фото 4/23 / Боковые отверстия для сброса давления

Отверстия для сброса давления просверлены в верхней части днища поршня или в боковых частях жарового пояса над канавкой компрессионного кольца. Если в поршне применены отверстия для сброса давления, то он предназначен для воздействия на компрессионное кольцо и его плотного прижатия к стенке цилиндра. В результате, в зоне жарового пояса снижается уровень «утечки» давления, а мощность — повышается. В основном, боковые отверстия для сброса давления (справа) просверливаются через нижнюю часть днища поршня до задней стенки канавки кольца. Поршень с такими отверстиями предназначен для установки на двигатель автомобилей, участвующих в гонках на выносливость или в шоссейных гонках. Вертикальные отверстия для сброса давления (слева) просверлены от днища поршня к канавке компрессионного кольца. Такая модель поршня чаще всего предназначена для двигателей гоночных автомобилей, и характеризуется высокой степенью износа в результате повышенного давления со стороны кольца. Отверстия для сброса давления являются наилучшим решением для двигателей гоночных автомобилей, которые выходят из строя и, соответственно, часто требуют ремонта и не рекомендованы для их установки на автомобили, предназначенные для ежедневной эксплуатации.

Фото 5/23 / Вертикальные отверстия для сброса давления

Поршневые пальцы — это деталь в двигателе, подверженная наибольшей нагрузке, что отображено красным цветом на рисунке ниже, полученного после проведения анализа конечного элемента. На днище поршня идет огромная нагрузка в результате расширения горючего газа в камерах сгорания. Эта нагрузка передается от шатуна через поршневые пальцы. Чтобы понять, какой нагрузке подвергается поршневой палец при его установке на двигатель гоночного автомобиля, нужно учитывать, что при мощности 850 лс двигатель NASCAR Sprint Cup работает при частоте оборотов от 9000 до 9500 оборотов в минуту. Прилагаемое усилие в результате давления цилиндра и внутренних нагрузок представляет собой разрушительную силу, которую можно приравнять к нагрузке в шесть тонн. И именно эту нагрузку принимает на себя каждый поршневой палец 77 раз за одну секунду. На некоторых гонках цикличная нагрузка может длиться на протяжении шестисот миль.

Фото 6/23 / Анатомия поршня

На рисунке ниже «Анализ конечного элемента» показана нагрузка, оказываемая на палец под давлением (рабочий ход двигателя) слева и инерционная нагрузка справа (после ВМТ на такте всасывания, где палец резко опускается вниз). Прогиб преувеличен, но наглядно показывает силу нагрузки на поршневой палец. Если применяется поршневой палец со слишком тонкими стенками, то в конечном итоге он деформируется. Если используется не правильный материал, поршневой палец не будет работать в условиях высокой и длительной нагрузки и просто выйдет из строя. Поэтому настолько важно подбирать правильную толщину стенок поршневого пальца во избежание чрезмерных прогибов, которые оказывают прямое влияние на правильную работу самого поршня.

Фото 7-8/23 / Анатомия поршня

Базовые параметры выбора правильной толщины стенки поршневого пальца:

стенка поршневого пальца 0,150 дюймов

Фото 9/23 / Анатомия поршня

стенка поршневого пальца 0,180 дюймов

Фото 10/23 / Анатомия поршня

Важно помнить, что между стенками поршневого пальца и внутренней части поршня остается тонкая масляная пленка. Существует несколько способов распределения масла по поверхности поршневого пальца. Первым способом производители называют смазку под нагрузкой, когда масло подается через одно или два специальных небольших отверстия для его обратного стока под давлением. Под вторым способом смазки подразумевается использование «протяжки» или небольших закругленных бороздок, которые идут параллельно относительно поверхности поршневого пальца. Эти небольшие углубления позволяют маслу идти обратным потоком от коленвала до поршневых пальцев с их внутренней стороны. Смазка поршневых пальцев под нагрузкой применяется чаще всего.

Фото 11/23 / Анатомия поршня — Базовые технические данные

Проверка поршневых пальцев

Поскольку поршневые пальцы – это чаще всего подшипники, важным моментом является тщательная обработка поверхности их внутренней поверхности (внутренний диаметр) во избежание износа и выхода из строя. Именно эта зона чаще всего проходит проверку. И именно с внутренней стороны поршневые пальцы чаще всего деформируются в результате высокой нагрузки, поэтому мягкая обработка методом шлифования этой части поверхности является критичной.

Фото 12/23 / Анатомия поршня — Базовые технические данные

Даже если результаты проверки показывают отсутствие деформации внутренних отверстий поршневых пальцев, износ все равно присутствует. Проверка внутренней поверхности пальцев на деформацию – это относительно простая процедура: необходимо поместить соответствующую вставку внутри поршневого пальца и посмотреть, насколько легко она будет вращаться. Затем следует соединить ее и со вторым поршневым пальцем и посмотреть, насколько легко выполняется ее поворот. Иногда вставка как бы застревает на втором поршневом пальце. Кроме того, если вставка «протягивается» с усилием, то это признак имеющейся деформации поверхности внутри поршневого пальца. В этом случае требуется его замена или обработка внутренней поверхности методом легкого шлифования.

Разгрузка клапана осуществляется за счет канавок, расположенных на кромке днища поршня, поскольку они обеспечивают зазор, необходимый для работы впускного и выпускного клапана. Диаметр этих канавок, их расположение и глубина зависят от целей применения двигателя. Двигатели, оснащенные большеразмерными клапанами и гоночными коленвалами, могут потребовать установку поршня с канавками для разгрузки клапанов большего диаметра и глубины в целях обеспечения необходимого зазора. К счастью, на рынке продаж существует большое количество производителей, занимающихся разработками поршней, используемых для различных доработок.

Читайте также:  Как легко засунуть поршень в суппорт

Фото 13/23 / Анатомия поршня — Базовые технические данные

Масляные форсунки / Разбрызгиватели

Масляные форсунки используются на многих современных двигателях с высокими эксплуатационными характеристиками, например: 4B11, 2JZGTE, SR20DET, 4G63 и т.д.. На двигателях для Формулы 1 установлено до шести форсунок на один цилиндр. Хотя форсунки не являются составной частью поршня, они играют важнейшую роль в обеспечении охлаждения и смазки поршня. Если сплав поршня не предназначен для работы в режиме тяжелых нагрузок, то он становится мягче и теряет прочность при высоких температурах. Это явление называется «нормализация» и может значительно снизить прочность поршня, что приводит к его выходу из строя. Масляные форсунки разбрызгивают хладагент на поршень, что снижает его общую температуру в ходе эксплуатации.

Фото 14/23 / Анатомия поршня — Базовые технические данные

Кольцо является своеобразным «пояском» вокруг поршня. Толщина зависит от назначения поршня. Чем выше нагрузка, тем больше толщина, что обеспечивает необходимую прочность. Верхняя часть колец на поршне для двигателя с турбонаддувом Subaru EJ257 (справа) толще. Данный поршень предназначен для работы в режиме нагрузки 300 лс на цилиндр. Если его сравнить с поршнем, предназначенным для двигателя без наддува слева, то там толщина колец будет меньше, поскольку режим нагрузки составляет 65 лс на цилиндр. Но это совсем не значит, что чем выше толщина колец, тем прочнее поршень. При слишком высоком значении толщины (более 0,300 дюймов) двигатель рискует потерять свою производительность и мощность. Чем выше расположено такое кольцо на поршне, тем эффективнее и мощнее работа двигателя в режиме стандартных нагрузок. Но такое же высокое расположение колец на поршне для двигателя с турбонаддувом ведет к мгновенному выходу поршня из строя. Таким образом, поршень для двигателя с турбонаддувом нуждается в дополнительном усилении за счет высокой толщины своего днища.

Фото 15/23 / Анатомия поршня — Базовые технические данные

Зазор разреза поршневого кольца

Фото 16/23 / Анатомия поршня — Базовые технические данные

Разрез на поршневом кольце обеспечивает необходимый зазор в случае увеличения размера при нагревании. Поскольку каждый двигатель индивидуален, правильный зазор зависит от целей применения. Различные значения, такие как выпускная мощность, внутренний диаметр, материал и т.д., могут влиять на изменения размера зазора. Если размер зазора не достаточный, концы кольца соединяются, что ведет к их выходу из строя, а также может стать причиной поломки двигателя. Если зазор слишком велик, поршневое кольцо не сможет эффективно контролировать прорыв газов в камере сгорания двигателя, что ведет к потере мощности. Не стоит забывать, что лучше ошибиться с зазором в большую сторону, чем в меньшую. Некоторые выполняют разрез на кольце вручную при наличии напильника и желания. Тем не менее, лучше всего использовать специальное шлифовальное колесо, которое поможет равномерно снять излишки материала с кольца. Ниже приводятся рекомендации по выбору размера зазора на поршневом кольце:

Фото 17/23 / Анатомия поршня — Базовые технические данные

Рекомендуемый зазор поршневого кольца
Назначение Минимальный зазор в дюймах
Верхнее кольцо Среднее кольцо Направляющая масляного кольца
Внутренний диаметр x Внутренний диаметр x Мин. зазор
Двигатель повышенной мощности 0,0045 дюймов 0,0050 дюймов 0,0015 дюймов
Двигатель средней мощности с турбонаддувом 0,0050 дюймов 0,0055 дюймов 0,0015 дюймов
Двигатель повышенный мощности для повседневной эксплуатации 0,0055 дюймов 0,0057 дюймов 0,0015 дюймов
Только гонки, двигатель с турбонаддувом 0,0060 дюймов 0,0063 дюймов 0,0015 дюймов

Зазор между юбкой поршня и цилиндром

Зазор между юбкой поршня и цилиндром, как и зазор разреза поршневого кольца, зависит от окружающих условий, в которых будет применяться поршень. Двигатели, на которых создается более высокое давление, обычно передают большее количества тепла к поршню и поэтому необходим больший зазор между стенкой цилиндра и юбкой поршня. Двигатели без наддува работают при значительно меньшем давлении цилиндров, и поэтому величина зазора является минимальной. Еще одним фактором, влияющим на зазор, является фактическая конструкция самого поршня. Стенки цилиндра расширяются больше в зонах установки алюминиевых частей. Этот фактор обычно учитывается производителями поршня.

Фото 18/23 / Анатомия поршня — Базовые технические данные

Покрытие поверхности поршня

Поверхность поршня может покрываться тремя различными способами: сухой смазочный материал, теплоизолирующие прослойки и масляные покрытия. Все типы покрытий удобны в применении, поскольку они обеспечивают защиту от повреждений в результате передачи тепла. За счет удержания тепла благодаря покрытию поршня снижается интенсивность нагрева топлива, что ведет к снижению риска воспламенения или взрыва. Кроме того, такие покрытия способствуют более равномерному распределению тепла по поверхности, за счет чего уровень тепловых пятен снижается, либо тепло равномерно отражается на камеру сгорания, что повышает эффективность сгорания топлива и снижает тепловое расширение за счет поглощения тепла. Многие производители предлагают различные типы покрытий, включая покрытие для поршня JE Subaru WRX FSR (теплоизолирующая прослойка наносится на днище и юбку поршня).

Фото 19/23 / Анатомия поршня

Ассиметричная и круглая форма поршня

«JE Pistons» недавно выпустила ассиметричные кованые поршни, на которых использовались две поршневые юбки различных размеров, благодаря чему поршень имеет ассиметричную геометрию конструкции. Такой поршень применяется на различных двигателях для гоночных автомобилей, принимающих участие в Формуле 1, ALMS и NASCAR. Секрет создания этих поршней не раскрывался вплоть до 2010 г., когда компания впервые открыто выпустила свой ассиметричный кованый поршень на вторичный рыное продаж.
Оба типа поршня (как ассиметричный, так и с правильной стандартной «круглой» геометрией) теперь находятся в свободной продаже и применяются на двигателях различного назначения. В целом, оба поршня выполняют свою функцию компактного устройства при условии грамотного производства. Тем не менее, асимметричная геометрия имеет значительное преимущество перед стандартной конструкцией, включая уменьшенную ширину юбки поршня на опоре минимально возможного размера, что способствует снижению контакта поршня со стенкой цилиндра, а т.е. помогает избежать потери мощности за счет трения. Благодаря небольшой длине поршневого пальца снижается длина всей конструкции поршня, как и его общий вес, в результате трех перечисленных выше преимуществ. При сравнении традиционного поршня круглой формы Mitsubishi 4G63 и ассиметричного (оба поршня взвешивались вместе с поршневыми пальцами) выяснилось, что разница составила 15 грамм на поршень, что является значительным достижением в мире технологических новинок.

На сегодняшний день поршень с ассиметричной геометрией успешно используется на различных автомобилях, начиная со стандартных и заканчивая скоростными EVO X (800 whp) AMS Performance и драгстарами Titan Motorsport мощностью 2000 и более лс.

Фото 23/23 / Анатомия поршня — Базовые технические данные

Источник статьи: http://tourerv.ru/forum/showthread.php?t=139052

Adblock
detector