Меню

Регулировка хода поршня гидроцилиндра

Регулирование гидропривода

Скорость движения исполнительных органов объемного гидропривода зависит от расхода жидкости, поступающего в рабочую камеру, и от объема этой камеры, поэтому возможности регулирования скорости гидроприрвода основаны на различных способах изменения расхода, либо на изменении объема рабочей камеры. Рассмотрим подробнее каждый из возможных способов регулирования скорости движения исполнительных механизмов гидравлического привода.

Объемное регулирование

Данный способ регулирования основан на изменении объема рабочих камер гидромашин — насосов и гидромоторов.

Регулирование рабочего объема насоса

Подачу объемного насоса можно вычислить по формуле:

Q = q × n × η

    где
  • q — объем рабочей камеры насоса
  • n — частота вращения вала насоса
  • η — объемный КПД

Получается, что изменения объем рабочей камеры насоса, можно регулировать расход жидкости, подаваемой в напорный трубопровод при постоянной частоте вращения.

Насосы, конструкция которых позволяет изменять объем рабочей камеры называют регулируемыми. Наибольшее распространение получили регулируемые пластинчатые и аксиально-поршневые насосы.

Конструкция регулируемых машин значительно сложнее чем нерегулируемых, а значит регулируемые насосы значительно дороже. Высокая стоимость является одним из главных недостатков объемного регулирования гидропривода.

Объемное регулирование насоса часто применяется для изменения скорости движения гидроцилиндров.

Регулирование рабочего объема гидромотора

Скорость вращения вала гидромотора можно вычислить, используя зависимость:

Используя данную зависимость можно сделать вывод, что изменяя объем рабочей камеры гидромотора можно регулировать скорость вращения вала.

Регулируемым называют гидромотор, в конструкции которого предусмотрена возможность изменения объема рабочей камеры. Наиболее часто используются регулируемые аксиально-поршневые моторы, существуют конструкции регулируемых пластинчатых и радиально-поршневых гидромоторов.

На риунке показан регулируемый аксиально-поршневой насос, изменение узла наклона блока, в данном случае, осуществляется с помоью механической передачи. При изменении угла наклона меняется величина хода поршней, а значит и подача насоса, чем меньше уогл — тем меньше ход.

Достаточно часто используется схема объемного регулирования с одновременным использованием регулируемых насоса и гидромотора. Наибоольшее распространение получили регулируемые аксиально-поршневые моторы.

Преимущества объемного регулирования

Недостатки объемного регулирования

Дроссельное регулирование

Суть дроссельного регулирования заключаются в отводе части жидкости, подаваемой насосом. Подача насоса при дроссельном регулировании делится на два потока.

Qн = Qгд + Qсл

  • где Qгд — расход, подводимый к гидродвигателям
  • Qсл — расход отправляемый на слива

Изменяя соотношение этих расходов можно менять скорость движения исполнительных механизмов.

В зависимости от схемы установки регулируемого гидравлического сопротивления — дросселя, различают три типовых схемы дроссельного регулирования гидропривода:

  • Последовательное
    • в линии нагнетания
    • в линии слива
  • Параллельное

Рассмотрим подробнее каждый из этих способов регулирования.

Последовательное регулирование с установкой дросселя в линии нагнетания

Дроссель или регулятор расхода при данном способе регулирования устанавливается в линию нагнетания насоса, он необходим для создания необходимого перепада давления. Сброс части жидкости осуществляется через предохранительный клапан.

Рассмотрим принцип работы схемы с последовательным дроссельным регулированием.

При полном открытии дросселя весь поток жидкости направляется к гидроцилиндру, скорость его движения при переключении распределителя будет максимальной.

При уменьшении проходного сечения дросселя давление перед ним будет увеличиваться. При достижении давления начала открытия предохранительного клапана, часть жидкость через него будет отправляться на слив. Скорость перемещения штока гидроцилиндра будет уменьшаться.

При дальнейшем закрытии дросселя давление перед ним будет расти, а значит предохранительный клапан будет открываться сильнее отправляя большее количество жидкости на слив. Что позволит уменьшать скорость движения штока цилиндра.

Данный способ регулирования характеризуется простотой реализации и относительной дешевизной органов регулирования. Однако дросселирование обуславливает большие потери энергии, а значит низкий КПД и большое тепловыделение. Причем при последовательном регулировании, нагретая на дросселе жидкость будет поступать в полость исполнительного гидродвигателя.

Читайте также:  Поршень от тепловоза 2тэ116

Последовательное регулирование с установкой дросселя в линии слива

Дроссель может устанавливаться не только в линии нагнетания насоса, но и в линии слива гидродвигателя, такую схему называют последовательным регулированием гидравлического привода с установкой дросселя в линии слива.

В результате уменьшения проходного сечения дросселя давление в линии нагнетания будет возрастать, когда оно достигнет величины достаточной для открытия предохранительного клапана часть жидкости через него будет отправлена на слив. Получается что при дроссельном регулировании гидродвигатель постоянно будет находится под нагрузкой за счет противодавления на сливе, что может негативно сказаться на его ресурсе.

При установке дросселя в линии слива нагретая на гидравлическом сопротивлении жидкость поступает не к гидродвигателю, как в случае с установкой дросселя в линию нагнетания, а в накопительный бак, где накопленное тепло рассеивается.

Параллельное дроссельное регулирование скорости гидропривода

Схема параллельного регулирования с помощью дросселя показана на рисунке.

Дроссель установлен параллельно гидроцилиндру. При увеличении открытия дросселя поток жидкости, проходящий через него на слив будет увеличиваться, а поток жидкости направляемый к гидродвигателю будет уменьшаться. Изменяя открытие дросселя можно регулировать соотношение расходов этих потоков. Выделяемое при дросселировании тепло с помощью жидкости отводится в бак.

Достоинства дроссельного регулирования гидравлического привода

Недостатки дроссельного регулирования

Частотное регулирование скорости гидропривода

В том случае, если для вращения вала насоса используется электродвигатель, для изменения подачи можно применить частотное регулирование.

Подача насоса определяется его рабочим объемом и частотой вращения вала, изменяя частоту можно влиять на подачу насоса.

Для регулирования частоты вращения вала электродвигателя, а значит и насоса, используется специальный регулятор частоты. Он позволяет изменять скорость вращения вала электродвигателя в широком диапазоне. При увеличении частоты вращения подача насоса будет расти, при уменьшении — снижаться.

Диапазон регулирования ограничен возможностями частотного регулятора, и величиной рабочего диапазона частот вращения насоса, например радиально-поршневые насосы устойчиво работают в диапазоне 1000 — 3000 об/мин.

Источник статьи: http://hydro-pnevmo.ru/topic.php?ID=243

Гидроцилиндры

Гидравлический цилиндр позволяет преобразовать гидравлическую энергию потока жидкости в механическую — выходного звена, которым может являться шток, плунжер, поршень.

Типы гидроцилиндров

В зависимости от конструкции различают несколько видов гидравлических цилиндров.

    По характеру хода
  • Одноступенчатые
  • Телескопические
    По направлению действия рабочей жидкости
  • Одностороннего действия
  • Двухстороннего действия
    По возможности торможения
  • С торможением
  • Без торможения
    По виду рабочего звена
  • Плунжерные
  • Мембранные
  • Сильфонные
  • Поршневые
    • С односторонним штоком
    • С двухсторонним штоком

Устройство гидроцилиндра двухстороннего действия

Гидравлические цилиндры двухстороннего действия имеют две разделенные герметичные рабочие полости, в которые по разным трубопроводам подводится жидкость. Гидроцилиндры двухстороннего действия могут передавать развиваемое усилие как в прямом, так и в обратном направлениях.

Устройство гидроцилиндра двухстороннего действия рассмотрим на примере самой распространенной конструкции с односторонним штоком.

Гидроцилиндр с односторонним штоком

Основные элементы конструкции двухстороннего гидроцилиндра с односторонним штоком показаны на рисунке.

  1. шток
  2. передняя крышка
  3. гильза
  4. поршень
  5. гайка
  6. задняя крышка
  7. грязесъемник
  8. манжета штоковая
  9. кольцо направляющее штоковое
  10. манжета поршневая
  11. кольцо резиновое
  12. кольцо направляющее поршневое

Принцип работы гидроцилиндра

Рабочая жидкость от насоса, через распределитель направляется в одну из полостей (поршневую или штоковую), противоположная полость соединятся со сливом.

Читайте также:  Чем отличается поршень дизельного двигателя от поршня бензинового двигателя

При поступлении жидкости в поршневую полость шток гидроцилиндра выдвигается, при необходимости преодолевая усилие нагрузки. При поступлении рабочей жидкости в штоковую полость шток гидроцилиндра втягивается.

Выдвинуть шток Нейтральное положение Втянуть шток

При поступлении жидкости в поршневую полость усилие, развиваемое гидроцилиндром можно вычислить по формуле:

При поступлении жидкости в штоковую полость эффективная площадь изменится, из площади поршня необходимо вычесть площадь штока.

Герметичность рабочих камер обеспечивается манжетными уплотнениями, не позволяющими перетекать жидкости из поршневой полости в штоковую. В крышке гидроцилиндра также устанавливают манжету для уплотнения штока, и грязесъемник для предотвращения попадания частиц загрязнения в полость цилиндра.

Гидроцилиндр с двухсторонним штоком

Усилие и скорость перемещения поршня со штоком при прямом и обратном ходе будут различными. Если необходимы одинаковые усилия или одинаковы скорости перемещения выходных звеньев, то используют гидроцилиндры с двухсторонним штоком.

В гидравлических цилиндрах этого типа один поршень связан с двумя штоками.

Для вычисления скорости и усилия гидроцилиндра с двусторонним штоком, можно применять формулы:

В современной технике применяются конструкции гидроцилиндров с двухсторонним штоком с закрепленным цилиндром и с закрепленным штоком.

Устройство гидроцилиндров одностороннего действия

Гидроцилиндры одностороннего действия способны развивать усилие лишь в одном направлении. Обратный ход таких цилиндров осуществляется под действием пружины, силы тяжести, или внешнего воздействия на шток.

Плунжерный гидроцилиндр

В гидроцилиндрах этого типа жидкость воздействует на плунжер, расположенный в рабочей камере. Обратный ход осуществляется за счет внешних сил или силы тяжести.

Плунжер способен передавать только усилие сжатия, величину усилия можно вычислить используя зависимость:

Скорость перемещения плунжера будет зависеть от диаметра плунжера и расхода рабочей жидкости.

Гидравлический цилиндр с пружинным возвратом

Гидроцилиндр с пружинным возвратом показан на рисунке.

При поступлении рабочей жидкости в поршневую полость осуществляется рабочий ход, пружина, расположенная в штоковой полости сжимается — шток выдвигается.

Обратный ход осуществляется за счет усилия пружины, поршневая полость при этом соединяется со сливом. Пружина может устанавливаться как в поршневой, так и в штоковой полости.

Гидроцилиндры специального исполнения

Рассмотрим несколько особых конструкций гидроцилиндров.

Телескопические гидроцилиндры

В телескопических гидроцилиндрах один шток размещен в полости другого штока. Это позволяет получить большую величину перемещения выходного звена при неизменных габаритах, так как в телескопических цилиндрах ход может превышать длину гильзы.

Телескопический гидроцилиндр одностороннего действия

Рабочая жидкость подводится в полость цилиндра через заднюю крышку. Секции выдвигаются последовательно — в первую очередь движение начнет секция с наибольшей эффективной площадью, затем с меньшей. Скорость при выдвижении каждой последующей секции будет увеличиваться, а усилие падать, в связи уменьшением эффективной площади. По этой причине расчетным должно быть усилие на секции с минимальной эффективной площадью.

Обратный ход осуществляется под действием внешних сил, рабочая полость при этом соединяется со сливом.

Телескопический гидроцилиндр двухстороннего действия

Подвод рабочей жидкости в представленной на рисунке конструкции осуществляется через шток.

Выдвижение секций, осуществляется в том же порядке, что и в телескопических гидроцилиндрах одностороннего действия.

Обратный ход обеспечивается подводом рабочей жидкости в штоковую полость, поршневая полость при этом соединяется со сливом.

Комбинированные гидроцилиндры

Для увеличения усилия на штоке гидроцилиндра, при отсутствии возможности увеличения наружного диаметра, используют тандемные или последовательно установленные гидроцилиндры. Схема сдвоенного гидроцилиндра показана на рисунке.

Читайте также:  Опель корса установка поршней

В данном случае увеличение усилия достигается за счет добавления второй рабочей камеры и дополнительного поршня, что позволяет увеличить эффективную площадь гидроцилиндра.

Характеристики гидроцилиндров

Основные параметры гидроцилиндров можно разделить на несколько групп.

Геометрические параметры

  • Диаметр поршня (гильзы), иногда его называют диаметром гидроцилиндра, наиболее распространненными являются диаметры: 10, 12, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 320, 400, 500, 620, 800 миллиметров.
  • Диаметр штока, стандартизированы следующие диаметры штоков гидравлических цилиндров: 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 320, 400, 500, 630, 800 миллиметров.
  • Ход — величина максимально возможного перемещания поршня со штоком или плунжера гидроцилиндра

Гидравлические параметры

  • Номинальное рабочее давление — давление, при котором гидроцилиндр будет работать в номинальном, расчетном режиме, при этом сохраняя параметры работы и надежности, гарантированные произодителем. Величина давления в гидроцилнре опредяляется значением нагрузки, при этом она может быть ограничена настройки предохранительного или редукционного клапана. При отсутвии нагрузки давление в цилиндре обуславливается только потерями на трение.
  • Расход жидкости, поступающий в гидроцилинлдр.

Механические параметры

  • Усилие развиваемое гидроцилиндром — пропорционально давдлению и эффективной площади, на которую воздействует жидкость.
  • Скорость перемещения штока — определяется величиной расхода жидкости, поступающей в гидроцилиндр и его эффективным диаметром.

Расчет гидроцилиндра

Попробуем разабраться как характеристики гидроцилиндра связаны между собой, и как на них влияют параметры работы гидопривода.

При поступлении жидкости в поршневую полость жидкость воздействует на поршень, усилие развиваемое гидроцилиндром в этом случае будет пропорционально давлению и площади поршня:

Скорость перемещения поршня со штоком будет зависеть от диаметра поршня и расхода жидкости:

При подаче жидкости в штоковую полость гидроцилиндра, давление будет воздействовать на кольцевую поверхность, образованную наружными диаметрами поршня и штока. Усилие в этом случае можно вычислить, используя зависимость:

Скорость перемещения поршня при подводе жидкости в штоковую полость будет зависеть не только от диаметра поршня и расхода, но и от диаметра штока:

Типовые конструкции гидроцилиндров

Несмотря на огромное разнообразие конструкций гидравлических цилиндров существуют, типовые решения, применяемые при проектировании гидроцилиндров, рассмотрим некоторые из них.

Гидроцилиндр на шпильках

Передняя и задняя крышка гидроцилиндров этой конструкции связаны шпильками (анкерами), гильза зажата между крышками цилиндра. Уплотнение поршня обеспечивается двумя манжетами.

Круглый гидроцилиндр

В представленной конструкции крышки крепятся к круглым фланцам, закрепленным с помощью сварки или резьбы на гильзе. Показанный на рисунке тип уплотнения поршня обеспечивает уплотнение в обоих направлениях.

Сварной гидроцилиндр

Крышки приварены к гильзе, конструкция неразборная, неремонтопригодная. В цилиндре установлены компактные поршневые уплотнения.

Чертеж гидроцилиндра

Конструкторская документация на гидроцилиндр должна включать в себя:

  • сборочный чертеж гидроцилиндра,
  • спецификацию,
  • рабочие чертежи деталей.

В качестве примера конструкции гидравлического цилиндра предлагаем вам ознакомиться со сборочным чертежом одноштокового гидроцилиндра двухстороннего действия. Передняя крышка данного цилиндра имеет резьбовое соединение с гильзой, задняя крышка с проушиной приварена к гильзе. Поршень зафиксирован на штоке с помощью резьбовых втулок, зафиксированных от поворота с помощью штифта.

Для того, чтобы скачать чертеж гидроцилиндра в формате pdf щелкните по изображению.

Вы также можете скачать чертеж гидроцилиндра в формате dwg.

Источник статьи: http://hydro-pnevmo.ru/topic.php?ID=41

Adblock
detector